917 research outputs found

    Automatic code review by learning the revision of source code

    Get PDF
    Code review is the process of manual inspection on the revision of the source code in order to find out whether the revised source code eventually meets the revision requirements. However, manual code review is time-consuming, and automating such the code review process will alleviate the burden of code reviewers and speed up the software maintenance process. To construct the model for automatic code review, the characteristics of the revisions of source code (i.e., the difference between the two pieces of source code) should be properly captured and modeled. Unfortunately, most of the existing techniques can easily model the overall correlation between two pieces of source code, but not for the “difference” between two pieces of source code. In this paper, we propose a novel deep model named DACE for automatic code review. Such a model is able to learn revision features by contrasting the revised hunks from the original and revised source code with respect to the code context containing the hunks. Experimental results on six open source software projects indicate by learning the revision features, DACE can outperform the competing approaches in automatic code review

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte

    Preparation and Performance Investigation of Li-SGO doped Semi-IPNs Porous Single Ion Conducting Polymer electrolyte

    Get PDF
    本文成功制备了磺酸锂功能化石墨烯,通过原位聚合方式成功将其添加到单离子传导聚合物电解质中制备出磺酸锂功能化石墨烯改性半互穿网络型多孔单离子传导聚合物复合电解质。与未掺杂磺酸锂功能化石墨烯半互穿网络型多孔单离子传导聚合物电解质相比,该电解质具有更高的孔隙率、吸液率、机械拉伸强度和离子电导率。电化学测试结果表明,掺杂磺酸锂功能化石墨烯后,单离子传导聚合物电解质表现出与电极界面更好的相容性,组装的Li|LiFePO4锂离子电池表现出良好的循环性能和更高的倍率性能。对氧化石墨烯磺酸锂功能化可应用于对单离子传导聚合物电解质的改性,有助于提升单离子传导聚合物电解质的综合性能,获得更高的电池性能。Herein, the lithiated sulfonated graphene oxide (Li-SGO) was successfully prepared via three steps by sulfonation of graphene oxide with 3-merraptnpropylt rimethnxysilane, oxidation of thiol into sulfonate with hydrogen peroxide and lithiation of sulfonate with aqueous lithium hydroxide. The as-prepared Li-SGO was then introduced into the semi-interpenetrating networks of single ion conducting polymer electrolyte (Li-SGO-FPAS) and poly vinylidenefluoride-hexafluoro propylene (PVDF-HFP) binder by in-situ polymerization to fabricate the porous single ion conducting polymer electrolyte membrane (Li-SGO-po-FPAS) generated from the poor compatibility between aromatic Li-SGO-FPAS and aliphatic PVDF-HFP binder. The key properties such as morphology, porosity, solvent uptake, mechanical strength, flexibility, lithium ion transference number, ionic conductivity and rate-capacity were successfully investigated. In addition, the neat single ion polymer electrolyte membrane without Li-SGO (FPAS) (po-FPAS) was prepared for comparison. The Li-SGO-po-FPAS possessed the high porosity of 55.9% and electrolyte uptake of 139.3wt.%, which are much higher than the values derived from the PP separator. As a result, the enhanced ionic conductivities of 0.23 mS·cm-1 and 1.84 mS·cm-1 were obtained at room temperature and 80℃, respectively, comparing to those of 0.14 mS·cm-1 and 1.20 mS·cm-1 for the po-FPA membrane. Furthermore, the mechanical strength of 9.9 MPa was obtained for the Li-SGO-po-FPAS, which is acceptable for the application in Li-ion batteries. The electrochemical characterizations indicate the better compatibility between the single ion conducting polymer electrolyte and the electrode interface after doping with the Li-SGO. The Li-SGO-po-FPAS showed the lithium ion transference number of 0.91 and electrochemical window of 4.6 V vs. Li+/Li. The Li|LiFePO4 Li-ion battery assembled from the Li-SGO-po-FPAS exhibited good cyclability and higher C-rate capacity. The results suggest that the treatment of GO by lithiation and sulfonation processes is useful for application in single ion conducting polymer electrolyte, and it is also favorable for improving the comprehensive performance of single ion conducting polymer electrolyte, subsequently superior battery performance.科技部重点研发计划项目(2018YFB1502903);国家自然科学基金项目(21603197)通讯作者:张运丰E-mail:[email protected]:Yun-FengZhangE-mail:[email protected]中国地质大学(武汉)材料与化学学院,湖北 武汉 430074Sustainable Energy Laboratory, Faculty of Material Science and Chemistry, China University of Geosciences (Wuhan), Wuhan 430074, HuBei, Chin

    Barriers to smart waste management for a circular economy in China

    Get PDF
    Waste management requires a new vision and drastic improvements for a transition to a zero-waste circular economy. In reality, however, many economies are producing more and more waste, which poses a serious challenge to environmental sustainability. The problem is enormously complex as it involves a variety of stakeholders, demands behavioral changes, and requires a complete rethinking of the current waste management systems and the dominant linear economic model. Smart enabling technologies can aid in a transformation of waste management toward a circular economy, but many barriers persist. This study first shortlists twelve important barriers to smart waste management in China based on interviews with experienced practitioners. It then prioritizes these barriers through a scientific prioritization technique, fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL), based on the survey data from three representative stakeholders. It identified three key causal barriers: the lack of regulatory pressures, the lack of environmental education and culture of environmental protection, and the lack of market pressures and demands. Practical and theoretical implications were discussed based on the research results and findings
    corecore