17 research outputs found

    Compositional Assessments of Key Maize Populations: B73 Hybrids of the Nested Association Mapping Founder Lines and Diverse Landrace Inbred Lines

    No full text
    The present study provides an assessment of the compositional diversity in maize B73 hybrids derived both from the Nested Association Mapping (NAM) founder lines and from a diverse collection of landrace accessions from North and South America. The NAM founders represent a key population of publicly available lines that are used extensively in the maize community to investigate the genetic basis of complex traits. Landraces are also of interest to the maize community as they offer the potential to discover new alleles that could be incorporated into modern maize lines. The compositional analysis of B73 hybrids from the 25 NAM founders and 24 inbred lines derived from landraces included measurements of proximates (protein, fat, ash, and starch), fibers, minerals, amino acids, fatty acids, tocopherols (α-, γ-, and δ-), β-carotene, phytic acid, and raffinose. Grain was harvested from a replicated trial in New York, USA. For each data set (NAM and landrace) canonical discriminant analysis allowed separation of distinct breeding groups (tropical, temperate, flint, mixed/intermediate) within each data set. Overall, results highlighted extensive variation in all composition components assessed for both sets of hybrids. The variation observed for some components within the landraces may therefore be of value for increasing their levels in modern maize lines. The study described here provided significant information on contributions of conventional breeding to crop compositional variation, as well as valuable information on key genetic resources for the maize community in the development of new improved lines

    Compositional Assessments of Key Maize Populations: B73 Hybrids of the Nested Association Mapping Founder Lines and Diverse Landrace Inbred Lines

    No full text
    The present study provides an assessment of the compositional diversity in maize B73 hybrids derived both from the Nested Association Mapping (NAM) founder lines and from a diverse collection of landrace accessions from North and South America. The NAM founders represent a key population of publicly available lines that are used extensively in the maize community to investigate the genetic basis of complex traits. Landraces are also of interest to the maize community as they offer the potential to discover new alleles that could be incorporated into modern maize lines. The compositional analysis of B73 hybrids from the 25 NAM founders and 24 inbred lines derived from landraces included measurements of proximates (protein, fat, ash, and starch), fibers, minerals, amino acids, fatty acids, tocopherols (α-, γ-, and δ-), β-carotene, phytic acid, and raffinose. Grain was harvested from a replicated trial in New York, USA. For each data set (NAM and landrace) canonical discriminant analysis allowed separation of distinct breeding groups (tropical, temperate, flint, mixed/intermediate) within each data set. Overall, results highlighted extensive variation in all composition components assessed for both sets of hybrids. The variation observed for some components within the landraces may therefore be of value for increasing their levels in modern maize lines. The study described here provided significant information on contributions of conventional breeding to crop compositional variation, as well as valuable information on key genetic resources for the maize community in the development of new improved lines

    Compositional Assessments of Key Maize Populations: B73 Hybrids of the Nested Association Mapping Founder Lines and Diverse Landrace Inbred Lines

    No full text
    The present study provides an assessment of the compositional diversity in maize B73 hybrids derived both from the Nested Association Mapping (NAM) founder lines and from a diverse collection of landrace accessions from North and South America. The NAM founders represent a key population of publicly available lines that are used extensively in the maize community to investigate the genetic basis of complex traits. Landraces are also of interest to the maize community as they offer the potential to discover new alleles that could be incorporated into modern maize lines. The compositional analysis of B73 hybrids from the 25 NAM founders and 24 inbred lines derived from landraces included measurements of proximates (protein, fat, ash, and starch), fibers, minerals, amino acids, fatty acids, tocopherols (α-, γ-, and δ-), β-carotene, phytic acid, and raffinose. Grain was harvested from a replicated trial in New York, USA. For each data set (NAM and landrace) canonical discriminant analysis allowed separation of distinct breeding groups (tropical, temperate, flint, mixed/intermediate) within each data set. Overall, results highlighted extensive variation in all composition components assessed for both sets of hybrids. The variation observed for some components within the landraces may therefore be of value for increasing their levels in modern maize lines. The study described here provided significant information on contributions of conventional breeding to crop compositional variation, as well as valuable information on key genetic resources for the maize community in the development of new improved lines

    Metabolomic Assessment of Key Maize Resources: GC-MS and NMR Profiling of Grain from B73 Hybrids of the Nested Association Mapping (NAM) Founders and of Geographically Diverse Landraces

    No full text
    The present study expands metabolomic assessments of maize beyond commercial lines to include two sets of hybrids used extensively in the scientific community. One set included hybrids derived from the nested association mapping (NAM) founder lines, a collection of 25 inbreds selected on the basis of genetic diversity and used to investigate the genetic basis of complex plant traits. A second set included 24 hybrids derived from a collection of landraces representative of native diversity from North and South America that may serve as a source of new alleles for improving modern maize hybrids. Metabolomic analysis of grain harvested from these hybrids utilized gas chromatography–time-of-flight mass spectrometry (GC-TOF-MS) and <sup>1</sup>H nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR) techniques. Results highlighted extensive metabolomic variation in grain from both hybrid sets, but also demonstrated that, within each hybrid set, subpopulations could be differentiated in a pattern consistent with the known genetic and compositional variation of these lines. Correlation analysis did not indicate a strong association of the metabolomic data with grain nutrient composition, although some metabolites did show moderately strong correlations with agronomic features such as plant and ear height. Overall, this study provides insights into the extensive metabolomic diversity associated with conventional maize germplasm

    Metabolomic Assessment of Key Maize Resources: GC-MS and NMR Profiling of Grain from B73 Hybrids of the Nested Association Mapping (NAM) Founders and of Geographically Diverse Landraces

    No full text
    The present study expands metabolomic assessments of maize beyond commercial lines to include two sets of hybrids used extensively in the scientific community. One set included hybrids derived from the nested association mapping (NAM) founder lines, a collection of 25 inbreds selected on the basis of genetic diversity and used to investigate the genetic basis of complex plant traits. A second set included 24 hybrids derived from a collection of landraces representative of native diversity from North and South America that may serve as a source of new alleles for improving modern maize hybrids. Metabolomic analysis of grain harvested from these hybrids utilized gas chromatography–time-of-flight mass spectrometry (GC-TOF-MS) and <sup>1</sup>H nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR) techniques. Results highlighted extensive metabolomic variation in grain from both hybrid sets, but also demonstrated that, within each hybrid set, subpopulations could be differentiated in a pattern consistent with the known genetic and compositional variation of these lines. Correlation analysis did not indicate a strong association of the metabolomic data with grain nutrient composition, although some metabolites did show moderately strong correlations with agronomic features such as plant and ear height. Overall, this study provides insights into the extensive metabolomic diversity associated with conventional maize germplasm
    corecore