62 research outputs found

    FIRST DETERMINATION OF THE PROTON’S WEAK CHARGE

    Get PDF
    The weak charge of the proton has been determined for the first time via a high precision electron-proton scattering experiment, Qweak, carried out at Jefferson Laboratory (JLab) in Newport News, USA. The weak charge is a basic property in subatomic physics, analogous to electric charge. The Standard Model makes a prediction for the weak charges of protons and other particles. First results described here are based on an initial 4% of the data set reported in 20131 , with the ultimate goal of the experiment being a high precision Standard Model test conducted with the full Qweak data set. These initial results are consistent with the Standard Model prediction; they serve as an important first determination of the proton’s weak charge and a proof of principle that the ultimate goals are within reach

    Hadronic Parity Violation: a New View through the Looking Glass

    Get PDF
    Studies of the strangeness changing hadronic weak interaction have produced a number of puzzles that have so far evaded a complete explanation within the Standard Model. Their origin may lie either in dynamics peculiar to weak interactions involving strange quarks or in more general aspects of the interplay between strong and weak interactions. In principle, studies of the strangeness conserving hadronic weak interaction using parity violating hadronic and nuclear observables provide a complementary window on this question. However, progress in this direction has been hampered by the lack of a suitable theoretical framework for interpreting hadronic parity violation measurements in a model-independent way. Recent work involving effective field theory ideas has led to the formulation of such a framework while motivating the development of a number of new hadronic parity violation experiments in few-body systems. In this article, we review these recent developments and discuss the prospects and opportunities for further experimental and theoretical progress.Comment: Manuscript submitted to Annual Reviews of Nuclear and Particle Scienc

    Does Digoxin Provide Additional Hemodynamic and Autonomic Benefit at Higher Doses in Patients With Mild to Moderate Heart Failure and Normal Sinus Rhythm?

    Get PDF
    AbstractObjectives. This study sought to examine the hemodynamic and autonomic dose response to digoxin.Background. Previous studies have demonstrated an increase in contractility and heart rate variability with digitalis preparations. However, little is known about the dose-response to digoxin, which has a narrow therapeutic window.Methods. Nineteen patients with moderate heart failure and a left ventricular ejection fraction <0.45 were studied hemodynamically using echocardiography and blood pressure at baseline and after 2 weeks of low dose (0.125 mg daily) and 2 weeks of moderate dose digoxin (0.25 mg daily). Loading conditions were altered with nitroprusside at each study. Autonomic function was studied by assessing heart rate variability on 24-h Holter monitoring and plasma norepinephrine levels during supine rest.Results. Low dose digoxin provided a significant increase in ventricular performance, but no further increase was seen with the moderate dose. Low dose digoxin reduced heart rate and increased heart rate variability. Moderate dose digoxin produced no additional increase in heart rate variability or reduction in sympathetic activity, as manifested by heart rate, plasma norepinephrine or low frequency/high frequency power ratio. In addition, we did not find that either low or moderate dose digoxin increased parasympathetic activity.Conclusions. We conclude that moderate dose digoxin provides no additional hemodynamic or autonomic benefit for patients with mild to moderate heart failure over low dose digoxin. Because higher doses of digoxin may predispose to arrhythmogenesis, lower dose digoxin should be considered in patients with mild to moderate heart failure.(J Am Coll Cardiol 1997;29:1206–13

    Status of Intraductal Therapy for Ductal Carcinoma in Situ

    Get PDF
    The intraductal approach is particularly appealing in the setting of ductal carcinoma in situ (DCIS), a preinvasive breast neoplasm that is thought to be entirely intraductal in its extent. Based on an emerging understanding of the anatomy of the ductal system as well as novel techniques to leverage the access accorded by the intraductal approach, researchers are actively exploring how ductal lavage, ductoscopy, and intraductal infusion of therapeutic agents may enhance breast cancer treatment. Both cytologic and molecular diagnostics continue to improve, and work is ongoing to identify the most effective diagnostic biomarkers for DCIS and cancer, although optimal targeting of the diseased duct remains an important consideration. Ductoscopy holds potential in detection of occult intraductal lesions, and ductoscopically guided lumpectomy could increase the likelihood of a more comprehensive surgical excision. Exciting pilot studies are in progress to determine the safety and feasibility of intraductal chemotherapy infusion. These studies are an important starting point for future investigations of intraductal ablative therapy for DCIS, because as our knowledge and techniques evolve, it is likely that DCIS may be the target most amenable to treatment by intraductal therapy. If such studies are successful, these approaches will allow an important and meaningful transformation in treatment options for women diagnosed with DCIS

    Genomics and premalignant breast lesions: clues to the development and progression of lobular breast cancer

    Get PDF
    Advances in genomic technology have improved our understanding of the genetic events that parallel breast cancer development. Because almost all mammary carcinomas develop in the terminal duct lobular units of the breast, understanding the events involved in mammary gland development make it possible to recognize those events that, when altered, contribute to breast neoplasia. In this review we focus on lobular carcinomas, discussing the pathology, development, and progression of premalignant lobular lesions from a genomic point of view. We highlight studies utilizing genomic approaches and describe how these investigations have furthered our understanding of the complexity of premalignant breast lesions

    Pathologic and biologic response to preoperative endocrine therapy in patients with ER-positive ductal carcinoma in situ

    Get PDF
    Abstract Background Endocrine therapy is commonly recommended in the adjuvant setting for patients as treatment for ductal carcinoma in situ (DCIS). However, it is unknown whether a neoadjuvant (preoperative) anti-estrogen approach to DCIS results in any biological change. This study was undertaken to investigate the pathologic and biomarker changes in DCIS following neoadjuvant endocrine therapy compared to a group of patients who did not undergo preoperative anti-estrogenic treatment to determine whether such treatment results in detectable histologic alterations. Methods Patients (n = 23) diagnosed with ER-positive pure DCIS by stereotactic core biopsy were enrolled in a trial of neoadjuvant anti-estrogen therapy followed by definitive excision. Patients on hormone replacement therapy, with palpable masses, or with histologic or clinical suspicion of invasion were excluded. Premenopausal women were treated with tamoxifen and postmenopausal women were treated with letrozole. Pathologic markers of proliferation, inflammation, and apoptosis were evaluated at baseline and at three months. Biomarker changes were compared to a cohort of patients who had not received preoperative treatment. Results Median age of the cohort was 53 years (range 38–78); 14 were premenopausal. Following treatment, predominant morphologic changes included increased multinucleated histiocytes and degenerated cells, decreased duct extension, and prominent periductal fibrosis. Two postmenopausal patients had ADH only with no residual DCIS at excision. Postmenopausal women on letrozole had significant reduction of PR, and Ki67 as well as increase in CD68-positive cells. For premenopausal women on tamoxifen treatment, the only significant change was increase in CD68. No change in cleaved caspase 3 was found. Two patients had invasive cancer at surgery. Conclusion Preoperative therapy for DCIS is associated with significant pathologic alterations. These changes may be clinically significant. Further work is needed to identify which women may be the best candidates for such treatment for DCIS, and whether best responders may safely avoid surgical intervention. Trial Registration ClinicalTrials.gov NCT0029074

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • …
    corecore