783 research outputs found

    Effects of livestock and wildlife grazing intensity on soil carbon dioxide flux in the savanna grassland of Kenya

    Get PDF
    Publisher Copyright: © 2021 The AuthorsAlthough grazing is the primary land use in the savanna lowland of southern Kenya, the effects of grazing on soil carbon dioxide flux (RS) remain unclear. A 12-month study was conducted from January to December 2020 on the effects of six grazing intensities sites (overgrazed (OG), heavily grazed (HG), moderately grazed (MG), moderately to lightly grazed (M-LG), lightly grazed (LG) and no grazing (NG)) on RS on. A camera trap was used to monitor the total number of animals at each site, indicating the grazing intensity. Weekly measurements of RS were taken using static greenhouse gas chambers along with simultaneous measurements of soil temperature (TS) and volumetric soil water content (WS) (depth of 5 cm). Mean RS at HG, MG, M-LG and LG sites was approximately 15–25% higher than at NG and OG sites (p 45%) than those in the dry seasons, and WS accounted for 71% of the temporal variability in RS (p < 0.05). In addition, the enhanced vegetation index (EVI, interpreted as a proxy for vegetation cover) explained 60% of the variance of RS, and WS and EVI together explained 75%. EVI showed a negative relationship (p < 0.05) with animal intensity, indicating that more grazing reduced vegetation cover and, consequently, soil organic carbon and biomass. Soil bulk density was lower at less grazed sites. While RS variability was unaffected by total nitrogen content, pH, and texture, correspondence analysis demonstrated that the main factors influencing RS dynamics across the year under different grazing intensities were WS and vegetation cover. Our results contribute to closing the existing knowledge gap regarding the effects of grazing intensity on RS in East Africa savannas. Therefore, this information is of great importance in understanding carbon cycling in savanna grassland, as well as the identification of the potential consequences of increasing land pressure caused by rising livestock numbers, and will assist in the development of climate-smart livestock management in East Africa.Peer reviewe

    Soil greenhouse gas emissions from a sisal chronosequence in Kenya

    Get PDF
    Sisal (Agave sisalana) is a climate-resilient crop grown on large-scale farms in semi-arid areas. However, no studies have investigated soil greenhouse gas (GHGs: CO2, N2O and CH4) fluxes from these plantations and how they relate to other land cover types. We examined GHG fluxes (Fs) in a sisal chronosequence at Teita Sisal Estate in southern Kenya. The effects of stand age on Fs were examined using static GHG chambers and gas chromatography for a period of one year in seven stands: young stands aged 1-3 years, mature stands aged 7-8 years, and old stands aged 13-14 years. Adjacent bushland served as a control site representing the surrounding land use type. Mean CO2 fluxes were highest in the oldest stand (56 +/- 3 mg C m(-2) h(-1)) and lowest in the 8-year old stand (38 +/- 3 mg C m(-2) h(-1)), which we attribute to difference in root respiration between the stand. All stands had 13-28% higher CO2 fluxes than bushland (32 +/- 3 mg C m(-2) h(-1)). CO2 fluxes in the wet season were about 70% higher than dry season across all sites. They were influenced by soil water content (W-S) and vegetation phenology. Mean N2O fluxes were very low (Peer reviewe

    The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures

    Get PDF
    Aims Decomposition of manure deposited onto pasture from grazing animals represents an important process for carbon (C) and nitrogen (N) cycles in grassland systems. However, studies investigating manure decomposition are scarce; especially in sub-Saharan Africa (SSA). Methods In this study, we measured decomposition of three types of animal manure (cattle, sheep, goat) over >1 year using litter bags at four climatically different sites across Kenya. Results Manure dry matter, total C, total N and ammonium concentrations decreased exponentially, with the most rapid decrease occurring during the first few weeks following application, followed by slower changes during the following 2-3 months. Rates of N mineralization were lower than those for C mineralization, resulting in decreasing C/N ratios over time. Generally, cattle manure decomposed faster than sheep or goat manure despite having a higher initial C/N ratio and lower N concentration, with decomposition rates for dry matter ranging from 0.200 to 0.989 k year(-1). Cellulose decomposed first, while lignin concentrations increased among all manure types and at all sites. Conclusions We found that total manure decomposition rates were positively correlated with cumulative precipitation and aridity index, but negatively correlated with mean temperature. Our results show much slower decomposition rates of manures in semi-arid tropical environments of East Africa as compared to the few previous studies in temperate climates.Peer reviewe

    Influence of soil properties on N₂O and CO₂ emissions from excreta deposited on tropical pastures in Kenya

    Get PDF
    Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N2O). While a number of studies have investigated the effects of excreta on soil N2O fluxes in developed economies and in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or texture) on N2O emissions from excreta patches have hardly been studied. In this study we investigated the importance of soil properties on N2O and carbon dioxide (CO2) emissions from cattle excreta (dung, urine, and manure [dung + urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from Western Kenya (Nandi county) to Nairobi, where N2O and CO2 fluxes were measured over four individual periods (two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung and manure applications led to increased CO2 and N2O fluxes during both dry and wet seasons. On average, the N2O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine respectively). Soil type had no measurable effect on N2O and CO2 emissions for either dung or manure application. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N2O emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N2O EF of 0.14%, which is one magnitude lower than the IPCC default N2O EF of 2%. Our results call for a revision of the IPCC guidelines for calculating N2O emissions from excreta deposition on tropical rangelands

    Remnants of an ancient forest provide ecological context for Early Miocene fossil apes

    Get PDF
    The lineage of apes and humans (Hominoidea) evolved and radiated across Afro-Arabia in the early Neogene during a time of global climatic changes and ongoing tectonic processes that formed the East African Rift. These changes probably created highly variable environments and introduced selective pressures influencing the diversification of early apes. However, interpreting the connection between environmental dynamics and adaptive evolution is hampered by difficulties in locating taxa within specific ecological contexts: time-averaged or reworked deposits may not faithfully represent individual palaeohabitats. Here we present multiproxy evidence from Early Miocene deposits on Rusinga Island, Kenya, which directly ties the early ape Proconsul to a widespread, dense, multistoried, closed-canopy tropical seasonal forest set in a warm and relatively wet, local climate. These results underscore the importance of forested environments in the evolution of early apes

    Functional and structural characterization of the mammalian TREX-2 complex that links transcription with nuclear messenger RNA export

    Get PDF
    Export of messenger RNA (mRNA) from the nucleus to the cytoplasm is a critical step in the gene expression pathway of eukaryotic cells. Here, we report the functional and structural characterization of the mammalian TREX-2 complex and show how it links transcription/processing with nuclear mRNA export. Mammalian TREX-2 is based on a germinal-centre associated nuclear protein (GANP) scaffold to which ENY2, PCID2 and centrins bind and depletion of any of these components inhibits mRNA export. The crystal structure of the GANP:ENY2 complex shows that two ENY2 chains interact directly with GANP, but they have different orientations from those observed on yeast Sac3. GANP is required to recruit ENY2 to nuclear pore complexes (NPCs), but ENY2 is not necessary to recruit GANP, which requires both its CID and MCM3AP domains, together with nucleoporin Nup153. GANP and ENY2 associate with RNA polymerase II and inhibition of mRNA processing redistributes GANP from NPCs into nuclear foci indicating that mammalian TREX-2 is associated with transcription. Thus, we implicate TREX-2 as an integral component of the mammalian mRNA export machinery where it links transcription and nuclear export by facilitating the transfer of mature mRNPs from the nuclear interior to NPCs

    Neutrophil Elastase Promotes Interleukin-1 beta Secretion from Human Coronary Endothelium

    Get PDF
    The endothelium is critically involved in the pathogenesis of atherosclerosis by producing pro-inflammatory mediators, including IL-1β. Coronary arteries from patients with ischemic heart disease express large amounts of IL-1β in the endothelium. However, the mechanism by which endothelial cells (ECs) release IL-1β remains to be elucidated. We investigated neutrophil elastase (NE), a potent serine protease detected in vulnerable areas of human carotid plaques, as a potential “trigger” for IL-1β processing and release. This study tested the hypothesis that NE potentiates the processing and release of IL-1β from human coronary endothelium. We found that NE cleaves the pro-isoform of IL-1β in ECs and causes significant secretion of bioactive IL-1β via extracellular vesicles. This release was attenuated significantly by inhibition of neutrophil elastase but not caspase-1. Transient increases in intracellular Ca2+ levels were observed prior to secretion. Inside ECs, and after NE treatment only, IL-1β was detected within LAMP-1-positive multivesicular bodies. The released vesicles contained bioactive IL-1β. In vivo, in experimental atherosclerosis, NE was detected in mature atherosclerotic plaques, predominantly in the endothelium, alongside IL-1β. This study reveals a novel mechanistic link between NE expression in atherosclerotic plaques and concomitant pro-inflammatory bioactive IL-1β secretion from ECs. This could reveal additional potential anti-IL-1β therapeutic targets and provide further insights into the inflammatory process by which vascular disease develops
    corecore