
Soil Biology and Biochemistry 140 (2020) 107636

Available online 23 October 2019
0038-0717/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Influence of soil properties on N2O and CO2 emissions from excreta 
deposited on tropical pastures in Kenya 

Yuhao Zhu a,b, Lutz Merbold b, Sonja Leitner b, Longlong Xia a, David E. Pelster b,1, 
Eugenio Diaz-Pines c, Sheila Abwanda b, Paul M. Mutuo b, Klaus Butterbach-Bahl a,b,* 

a Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467, 
Garmisch-Partenkirchen, Germany 
b Mazingira Centre, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi, 00100, Kenya 
c Institute of Soil Research, University of Natural Resources and Life Sciences (BOKU), Peter-Jordan-Straße 82, 1190, Vienna, Austria   

A R T I C L E  I N F O   

Keywords: 
Soil properties 
Excreta 
N2O emission factor 
Dung 
Urine 
Seasonality 
Sub-Saharan Africa (SSA) 

A B S T R A C T   

Urine and dung patches deposited by grazing cattle on grassland are an important source of nitrous oxide (N2O). 
While a number of studies have investigated the effects of excreta on soil N2O fluxes in developed economies and 
in China, observations in sub-Saharan Africa (SSA) are scarce. Moreover, the effects of soil properties (e.g. pH or 
texture) on N2O emissions from excreta patches have hardly been studied. In this study we investigated the 
importance of soil properties on N2O and carbon dioxide (CO2) emissions from cattle excreta (dung, urine, and 
manure [dung þ urine]) for five typical tropical soils in Kenya. For this, intact soil cores were translocated from 
Western Kenya (Nandi county) to Nairobi, where N2O and CO2 fluxes were measured over four individual periods 
(two during dry seasons and two during wet seasons). Fluxes were measured for between 25 and 73 days 
following surface application of excreta, depending on how quickly emissions returned to baseline. Both dung 
and manure applications led to increased CO2 and N2O fluxes during both dry and wet seasons. On average, the 
N2O emission factor (EF) for manure was higher than for dung. The EFs during the wet season were higher for 
both the dung (0.12%) and urine (0.50%) compared to the dry season EFs (0.01% and 0.07% for dung and urine 
respectively). Soil type had no measurable effect on N2O and CO2 emissions for either dung or manure appli
cation. In contrast, soil clay content was negatively (P < 0.05) and pH positively (P < 0.05) correlated with N2O 
emissions after urine application. Assuming an excreta-N ratio of dung to urine of 66:34, as evidenced in earlier 
studies for SSA, and averaging across all treatments and soils, we calculated a cattle excreta N2O EF of 0.14%, 
which is one magnitude lower than the IPCC default N2O EF of 2%. Our results call for a revision of the IPCC 
guidelines for calculating N2O emissions from excreta deposition on tropical rangelands.   

1. Introduction 

Nitrous oxide (N2O) is a potent greenhouse gas with a global 
warming potential 265 times greater than that of carbon dioxide (CO2) 
on a per mass basis over 100-years (IPCC, 2014), and it is estimated to 
account for 6% of total anthropogenic global warming (Davidson, 
2009). Current atmospheric concentrations of N2O are approximately 
18% higher than pre-industrial levels and concentrations were projected 
to further increase by 35–60% between 2007 and 2030 (Smith et al., 
2007). More specifically, annual N2O emissions from excreta (i.e. dung 

and urine) deposited by grazing livestock were estimated to be 1.5 Tg 
N2O–N yr� 1, which is equivalent to 41% of all N2O emissions derived 
from global livestock production systems and 22% of total anthropo
genic N2O emissions (Oenema et al., 2005; Taghizadeh-Toosi et al., 
2011). Smallholder mixed-crop and pastoral livestock systems, which 
rely on native pasture grazing are widespread across sub-Saharan Africa 
(SSA), and support an estimated 123 million cattle (Thornton and Her
rero, 2014). Due to the free grazing in daytime, it is estimated that in 
SSA more than 40% of total cattle excreta are deposited on rangelands 
(Rufino et al., 2006). As a result, direct N2O emissions from urine and 
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dung excreta on SSA pastures were estimated to cause 62% of total 
annual N2O emissions in the region (Tully et al., 2017). 

Up to 75–90% of nitrogen (N) ingested by grass-fed animals is 
returned to the soil through dung and urine excretion (Saggar et al., 
2013; Bell et al., 2015). As adult cattle can excrete as much as 23 kg 
dung and 21 L urine over 13 dung and ten urine patches per day (Haynes 
and Williams, 1993), the amount of N contained in individual urine or 
dung patches by far exceeds plant N demands in the deposited area (Di 
and Cameron, 2007; Chadwick et al., 2018). In fact, the amount of N in a 
dung patch was calculated to be equivalent to up to 1130 kg N ha� 1 

(Saarij€arvi et al., 2006), while N loading rates for urine patches were 
found to be equivalent to 613 kg N ha� 1 for dairy cattle and 345 kg N 
ha� 1 for beef cattle (Selbie et al., 2015). Thus, high environmental N 
losses due to nitrate (NO3

� ) leaching, ammonia (NH3) volatilization, or 
other gaseous emissions (N2O, nitric oxide [NO] and dinitrogen [N2]) 
are often associated with N excretion on rangeland (Chadwick et al., 
2018). 

Although there are many studies focusing on N2O emissions from 
excreta patches, most of these have focused either on timing (Lessa et al., 
2014; Rochette et al., 2014; Bell et al., 2015) or application rate (Van 
Groenigen et al., 2005a; Sordi et al., 2014; Zhu et al., 2018) of excreta, 
while neglecting the influence of soil properties on N2O emissions. 
However, the magnitude and temporal dynamics of soil N2O emissions 
are determined not only by soil N availability but also by key soil 
properties (Butterbach-Bahl et al., 2013; Neira et al., 2015; Samad et al., 
2016; Wang et al., 2018a,b; Ghezzehei et al., 2019). For example, soil 
texture and soil organic carbon content (SOC) affect the water holding 
capacity and therefore the gas diffusivity of soils. Both factors are crucial 
parameters controlling the availability of oxygen (O2) in soils and 
consequently soil microbial processes, thus N2O production (Davidson 
et al., 2000; Butterbach-Bahl et al., 2013; Balaine et al., 2016). Consis
tent with this, two other previous studies suggested that certain soil 
properties such as soil texture, pH and bulk density may affect denitri
fication rates and soil N2O emissions from livestock excreta applied to 
pasture soils (Cai and Akiyama, 2016; Wang et al., 2018a,b). However, 
to our knowledge, no previous study has systematically explored how 
soil properties may affect N2O emissions from excreta patches. 

In general, N2O emissions from animal excreta on grasslands have 
been found to scale linearly with the dung mass (Zhu et al., 2018) or 
urine volume (Sordi et al., 2014), with higher N2O emissions from cattle 
urine compared to cattle dung due to higher N availability in urine and 
greater interactions of urine with the soil microbial communities as it 
infiltrates into the soil (Cai et al., 2017). 

Depending on diet, N partitioning between cattle dung and urine is 
thought to range from 50:50 to 25:75 (Valk, 1994; Webb and Mis
selbrook, 2004; Van der Weerden et al., 2011; Chadwick et al., 2018). 
The split depends on the crude protein (CP) intake and concentration in 
feedstuffs. In Western Kenya, CP of feed ranges from 3.2 to 14% 
(Onyango et al., 2019), which is much less than that in intensive pro
duction systems such as in the USA where CP concentrations range from 
17 to 23% (Council, 2015; Korir et al., 2016). The low CP concentration 
of feeds in SSA therefore results in an average N partitioning between 
cattle dung and urine of 66:34 (Rufino et al., 2006). 

Given the differences in N2O emission factors (EF) between dung and 
urine (Cai et al., 2017), disregarding excreta-N partitioning might cause 
large uncertainties when estimating regional N2O emission inventories. 
However, the Intergovernmental Panel on Climate Change (IPCC) 
guidelines do not disaggregate the EF for urine and dung, rather they 
propose a default N2O EF of 2% excreta-N (IPCC, 2006). As such, many 
recent studies have suggested that disentangling N2O emissions from 
urine and dung is critical to improve our understanding of N2O emis
sions from grazed pastures, better assess this key source for atmospheric 
N2O and identify potential mitigation options (Van der Weerden et al., 
2011; Krol et al., 2016; Chadwick et al., 2018). Despite differences in 
climate and soils, most countries in SSA, due to the scarcity of local and 
regional studies, still use the IPCC default value to estimate their 

country-level greenhouse gas (GHG) inventories, even though this may 
not accurately reflect the specific conditions of SSA (Ogle et al., 2014). 
The objectives of our study were to: a) examine the influence of soil type 
on the CO2 and N2O emissions from single dung, urine or manure 
patches after deposition on tropical pasture; b) quantify the cumulative 
CO2 and N2O emissions from urine and dung applications to the five soil 
types; and c) examine whether CO2 and N2O emission magnitudes from 
dung, urine or manure patches would differ between dry and wet sea
sons. We hypothesized that: a) soil properties such as pH or texture have 
minimal effects on N2O emissions from dung but significant effects on 
N2O emissions from urine deposited onto pasture; b) soils with a high 
SOC would have higher N2O emissions from urine deposited onto 
pasture than soils with low SOC; c) N2O emissions would be higher and 
effects of soil properties would be stronger during the wet than during 
the dry season; and d) soil CO2 fluxes would be stimulated by all addi
tions of excreta. 

2. Materials and methods 

2.1. Soil and site description 

For our study, five soil types including (i) poorly-drained Gleysols, 
(ii) well-drained Nitisols, (iii) well-drained Acrisols, (iv) well-drained 
Cambisols, and (v) well-drained Ferralsols (IUSS Working Group WRB, 
2014) differing in SOC (34–45 g C kg� 1 dry matter), clay content 
(29–53%) and pH (5.3–6.4) were selected in Nandi County, Western 
Kenya (Table 1). Sampling locations were selected based on a soil map 
for Kenya (Jaetzold et al., 2010) and the willingness of smallholder 
farmers to participate in the study. In total, 14 farms with grazing pas
tures or rangelands were chosen. There were four farms each for Nitisols 
and Gleysols, while two farms each were allocated for the other soil 
types. Before taking the cores, grass was cut down to 2 cm above the soil 
surface, after which intact soil cores with a diameter of 26 cm and a 
depth of 12 cm were collected with spades. In the area immediately 
adjacent to the soil cores, we took soil samples using 100 cm3 soil cyl
inders to measure soil bulk density (BD) and with a 4.5 cm diameter soil 
auger to 5 cm depth to measure soil carbon (C), N and pH (for a detailed 
description see Saiz and Albrecht, 2016). 

The intact soil cores were carefully wrapped in plastic bags and put 
into 50 L-buckets. Small holes were made to allow for gas exchange, and 
the cores were immediately transported to the Mazingira Centre of the 
International Livestock Research Institute (ILRI) in Nairobi, Kenya (S 
1�16013"; E 36�43023"; altitude 1809 m asl). At the study site, soil cores 
were embedded into a flat grassland dominated by a mixture of Kikuyu 
grass (Pennisetum clandestinum Hochst. ex Chiov.) and Rhodes grass 
(Chloris gayana Kunth), i.e. grass species that were also found in the 
swards of the sampled rangelands. In addition to the five different soil 
types, dried and sieved (mesh width 2 mm) sand was included in this 
study as a control. Unfortunately, the sand contained high amount of 
soil, which still supported microbial activities. The soil cores were 
placed into holes (30 cm diameter, 15 cm deep) in an existing grassland 
immediately adjacent to the Mazingira Centre that had been lined with 
the same sand at the bottom. The sand was also used to fill the gaps on 
the sides of the cores in order to separate the soil cores from the adjacent 
soil. This procedure did not likely significantly affect N movement in the 
soil as the main rooting depth of the sward was generally less than 15 cm 
and as vertical N transport with the soil water movement was not 
influenced. After installation, soil cores were left to settle for three 
weeks to allow for equilibration with environmental conditions at the 
ILRI site. Thereafter, the grass was cut down to 2 cm again and excreta 
applied in the following days. Note that before the start of each trial, 
new soil cores were obtained from the field sites in Nandi County, 
transferred to ILRI, Nairobi, and placed in newly opened holes to avoid 
any legacy effects from the previous trial(s). A meteorological station 
was installed to record precipitation (tipping rain gauge, ECRN-100 
high-resolution, Decagon, Pullman, WA; USA) and air temperature 

Y. Zhu et al.                                                                                                                                                                                                                                     



Soil Biology and Biochemistry 140 (2020) 107636

3

and humidity (ATMOS 14, Decagon, Pullman, WA; USA) at a 5 min 
resolution. Soil moisture and temperature at 0.05 m depth were also 
measured during gas sampling (Decagon 5TM sensors, Decagon, Pull
man, WA; USA). 

2.2. Experimental design 

In this experiment, four separate trials were conducted; two during 
the wet season and two during the dry season. Trial 1 was conducted 
from 26 July 2016 to 25 August 2016 (dry season) with eight cores of six 
different soils, resulting in a total of 48 soil cores. We applied 0.5 kg of 
fresh dung to the soil surface of four cores of each soil type, while the 
other four served as controls (i.e. no application, Fig. 1). For the 
following three trials, 12 new soil cores of the same six soils were 
installed, giving a total of 72 soil cores for each of the remaining three 
trials. Trial 2 was conducted from 16 October 2017 to 01 December 
2017 (wet season). The 12 soil cores of each soil type were divided 
evenly into three groups that received either no application, or a surface 
application of either 0.5 kg fresh dung or 0.5 kg fresh manure 
(dung þ urine) (Fig. 2). Trial 3 was conducted from 25 March 2018 to 14 
May 2018 (wet season, Fig. 3), while the fourth trial was conducted from 
02 July 2018 to 04 October 2018 (dry season, Fig. 4). In these two trials, 
12 soil cores of each soil type were divided evenly into four groups with 
either no application, or with 0.5 L distilled water, 0.5 L urine or a 
surface application of 0.5 kg fresh dung. Excreta application was done 
following a few days of background measurements (i.e. prior to excreta 
application) at the beginning of each trial (see Figs. 1–4). Excreta 
application rates were scaled to the chamber area (0.04 m2) based on 
previous studies that found that emissions scale linearly with mass/ 
volume of applied excreta (Sordi et al., 2014; Zhu et al., 2018). Due to an 

initial lack of urine-collection harnesses, urine collection was only 
possible in 2018. Therefore, urine and soil interaction effects on soil N2O 
fluxes could only be studied in trials 3 and 4. 

Annual rainfall distribution at Nairobi, Kenya (mean 1982–2012: 
869 mm) is bimodal with a long rainy season from the end of March to 

Table 1 
Soil pH, bulk density, carbon and nitrogen concentration, C/N ratio, soil sand and clay content of the different soils used in the experiment.  

Soil type pH Bulk density (g 
cm� 3) 

C content (g kg� 1 dry 
matter) 

N content (g kg� 1 dry 
matter) 

CEC (cmol 
kg� 1) 

C/N ratio Sand (%) Clay (%) 

Gleysols 6.0 � 0.3bc 0.94 � 0.13b 45.6 � 9.3a 3.91 � 0.92a 151 � 16a 12 � 0.5bc 27.2 � 14.4bc 46.6 � 2.9a 

Nitisols 5.9 � 0.5c 0.95 � 0.11b 42.9 � 8.7a 3.63 � 0.93ab 147 � 62ab 12 � 0.9b 25.2 � 5.0c 50.1 � 5.3a 

Acrisols 6.4 � 0.6b 1.17 � 0.14a 35.2 � 6.1b 3.12 � 0.64bc 137 � 37ab 11 � 0.6c 52.7 � 1.4a 28.6 � 21.4b 

Cambisols 5.6 � 0.4d 1.10 � 0.13a 34.7 � 6.5b 2.89 � 0.69c 85 � 43bc 12 � 0.8b 37.7 � 2.8b 42.6 � 4.2a 

Ferralsols 5.3 � 0.5e 0.98 � 0.08b 37.0 � 5.1b 2.80 � 0.61c 67 � 7c 14 � 1.7a 24.5 � 1.4c 52.6 � 4.3a 

Sand 8.4 � 0.0a 1.07 � 0.11ab 0.3 � 0.1c 0.00 � 0.00d  – – – 

Values are mean � standard deviation (n ¼ 3). Different lowercase letters indicate significant differences within columns (P < 0.05). 

Fig. 1. Observation time and treatments in Trial 1. The lower panel shows air 
temperature (�C) and precipitation (mm). Red arrows indicate application dates 
for dung. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 

Fig. 2. Observation time and treatments in Trial 2. The lower panel shows air 
temperature (�C) and precipitation (mm). Red arrows indicate application dates 
for dung or manure. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Observation time and treatments in Trial 3. The lower panel shows air 
temperature (�C) and precipitation (mm). Red arrows indicate application dates 
for excreta (or water). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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the end of June and a short rainy season from October to December. 
Trials 1 and 4 were conducted during the dry season, with 34.8 mm 
precipitation in 25 days (trial 1) and 41.6 mm precipitation in 73 days 
(trial 4); trial 2 was conducted during the short rainy season with 
83.2 mm precipitation in 43 days and trial 3 was conducted during the 
long rainy season with 596.4 mm precipitation in 39 days. Across our 
four observation periods, the mean temperatures were 16.0, 17.8, 17.8 
and 16.5 �C during trials 1, 2, 3 and 4, respectively (Figs. 1–4). 

Fresh dung and manure were collected at the ILRI farm from a cattle 
herd that was grazed on pasture dominated by a mixture of Kikuyu grass 
and Rhodes grass during the day and then housed in single-animal pens 
at night, where they had access to hay from Kikuyu and Rhodes grass. 
Excreta were collected from the concrete floors of each pen in the 
mornings, after the animals had been taken outside for grazing. To avoid 
contamination of dung with urine, only the upper half of dung cakes was 
collected from the floor. To collect manure (dung þ urine), a water- 
proof plastic sheet was placed on the concrete floor, and the edges were 
raised upward to capture all the urine and dung from individual animals 
overnight, which was then homogenized in a bucket. Dung and manure 
were collected immediately before application to prevent nutrient losses 
during storage. Fresh urine was collected from three steers, each fitted 
with collection harnesses. The three urine samples were pooled after 
collection and the pH was measured immediately. Urine was acidified 
with 50 ml 20% HCl to a pH � 3 to minimize N loss during collection and 
storage and then frozen at � 20 �C until application. Before application, 
urine was thawed and the pH re-adjusted to the original pH with 2 M 
NaOH. 

2.3. Measurements of CO2 and N2O fluxes 

For CO2 and N2O fluxes measurements, we used closed static 
chambers (Norman et al., 1997). Polyvinyl chloride collars with 22.5 cm 
inner diameter and 13 cm height were inserted 8 cm into the soil on the 
plots with the soil cores. During chamber deployment, the collars were 
covered with an opaque, airtight lid and four 20 ml gas samples were 

collected via a sampling port in the centre of the lid at times 0, 10, 20, 
and 30 min. The airtight lid was removed between samplings. Gas 
samples were immediately analyzed for CO2 and N2O concentrations 
using a gas chromatograph (SRI 8610C, SRI Instruments, Torrance, CA, 
USA) equipped with a flame ionization detector (FID) for CO2 and an 
electron capture detector (ECD) for N2O. The oven was operated at 
70 �C, and the ECD and FID were heated to 340 and 350 �C. The carrier 
gas (pure N2) had a flow rate of 25 mL min� 1. CO2 (5%) in 95% N2 was 
used as purge gas (3 ml min� 1) for the ECD to avoid cross-interferences 
of the N2O signal with CO2 (Zheng et al., 2004). Greenhouse gas fluxes 
were calculated on basis of temporal changes of CO2 and N2O concen
trations in the headspace of closed chambers. Slopes were calculated 
either using linear or non-linear regression analysis, using R2 values as 
decision criteria (Yao et al., 2015). Corrections for air pressure and 
headspace temperature were applied as described by Wolf et al. (2010). 
The flux detection limits were 2.3 μg N2O–N m� 2 h� 1 and 1.3 mg CO2–C 
m� 2 h� 1 (Parkin et al., 2012). The fluxes were calculated by the 
following formula:  

F ¼ (b �MW �VCh � 60 � 106) / (ACh �Vm � 109)                                   

Where F is the flux rate (mg CO2–C m� 2 h� 1 or μg N2O–N m� 2 h� 1), b is 
the slope of concentration change (ppm min� 1 or ppb min� 1), MW is the 
molecular weight of component (12 g CO2–C mol� 1 or 28 g N2O–N 
mol� 1), VCh is the chamber volume (m3), ACh is the chamber area (m2), 
and Vm is the corrected standard gaseous molar volume (m3 mol� 1). 

The sampling scheme was as follows: Before excreta application CO2 
and N2O fluxes were measured for at least three individual days. 
Following excreta application for the first trial, gas fluxes were 
measured twice per day for three days, then every two days for the next 
two weeks, and every three days for the last eight days. For the other 
three trials, fluxes were measured after excreta application daily for the 
first week, then every two days for the next two weeks, and three or four 
days per time for the remaining days. To capture the entire CO2 and N2O 
emissions of the applied excreta, samples were collected for a minimum 
of one additional week (sometimes longer) after CO2 and N2O fluxes had 
returned to background in all treatments, i.e. to levels as observed for 
the unamended soil cores. In the majority of cases fluxes returned to 
background levels within two or three weeks after application of dung or 
manure. Still, it needs to be noted that during the third trial (wet season) 
fluxes in the urine treatment only returned to background levels after 
five weeks. Accordingly, we extended the observation time for the fourth 
trial to make sure that the entire period with elevated fluxes was 
captured. In total, CO2 and N2O fluxes were measured on 17 occasions/ 
14 days (trial 1), 19 days (trial 2), 18 days (trial 3), and 30 days (trial 4). 

Cumulative emissions were calculated using trapezoidal integration. 
Net cumulative emissions were calculated by subtracting cumulative 
emissions from control plots, i.e. plots not receiving excreta, from cu
mulative emissions of plots with excreta. The N2O EF (i.e. the proportion 
of applied N emitted as N2O) was calculated by dividing the net cu
mulative emissions by the amount of added excreta-N according to the 
equation:   

2.4. Soil and excreta analysis 

For soil BD determination soil was sampled with a 100 cm3 ring, the 
oven-dried at 105 �C for 24 h, and weighed. Soil pH was measured using 

Fig. 4. Observation time and treatments in Trial 4. The lower panel shows air 
temperature (�C) and precipitation (mm). Red arrows indicate application dates 
for excreta (or water). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

N2O EF ð%Þ¼
Cumulative N2O emissionðg N2O � NÞ from excreta application � Cumulative N2O emission ðg N2O � NÞ from control

Nitrogen content applied as excreta ðg NÞ
� 100   
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a glass electrode in a water:soil suspension of 2.5:1 (weight:weight). Soil 
CEC was measured by ETH Zurich using BaCl2-TEA method (Hendershot 
et al., 2007). Water content of dung and manure was determined by 
drying fresh samples in the oven at 105 �C until constant weight. For 
total C and N, soil, dung or manure samples were dried at 50 �C for three 
days, ground and analyzed with an elemental combustion system 
(Costech International S. p.A., Milano, Italy). Total urine N concentra
tion was analyzed by the Kjeldahl method (Kirk, 1950). Soil texture was 
estimated based on the soil particle size distribution as analyzed by the 
hydrometer technique (van Reeuwijk, 2002; Scrimgeour, 2008). 

2.5. Data analysis 

Two-way ANOVA with Tukey’s HSD test was used to test for differ
ences of cumulative emissions from unamended control plots and 
excreta amended plots and for testing differences between soils during 
the same trial. The differences of N2O EF for urine, dung and manure 
among soils in the same trial were also tested using two-way ANOVA 
with Tukey’s HSD test. All statistical calculations were done in R v3.5.3 
(R core team, 2019). The linear regression between urine EF and soil 
clay content or pH was conducted by Sigmaplot 12.5 (Systat Software, 
Inc. SigmaPlot for Windows). 

3. Results 

3.1. Soil properties 

The pH of the different soils sampled from individual farms ranged 
from 5.3 � 0.5 (Ferralsols) to 8.4 � 0.0 (Sand) (Table 1). Soil BD varied 
from 0.94 � 0.13 g cm� 3 (Gleysols) to 1.17 � 0.14 g cm� 3 (Acrisols). The 
Gleysols had the highest C and N concentrations (45.6 g � 9.3 C kg� 1 dry 
matter [DM] and 3.91 � 0.92 g N kg� 1 DM), while the Sand had the 
lowest C and N concentrations (0.3 � 0.1 g C kg� 1 DM and 0.0 � 0.0 g N 
kg� 1 DM). There were large differences in the proportion of sand and 
clay in the different soils, with the sand content ranging from 24.5% 
(Ferralsols) to 52.7% (Acrisols) and clay content ranging from 28.6% 
(Acrisols) to 52.6% (Ferralsols) (Table 1). 

3.2. Excreta properties 

Dung properties used in the different trials varied substantially 
(Table 2) because the quality of the grasses in the pasture differed be
tween dry and wet season. As a result, the dung used in trial 1 (dry 
season) had the highest N content (18.10 � 0.12 g N kg� 1 DM) and 
lowest C content (397.2 � 0.2 g C kg� 1 DM), while the lowest N con
centration and highest C concentration was measured in the dung used 
for the third trial (wet season), which had 11.75 � 0.09 g N kg� 1 DM and 
422.7 � 0.3 g C kg� 1 DM (Table 2). Consequently, the dung C/N ratio 
also varied significantly from 22 (trial 1, dry season) to 36 (trial 3, wet 
season). Compared to dung, manure had a higher water content, and 
lower C and N concentrations. Urine N concentration also varied be
tween the two trials and ranged from 6.42 � 0.23 g N L� 1 (trial 3, wet 
season) to 5.69 � 0.14 g N L� 1 (trial 4, dry season) (Table 2). 

3.3. Background N2O and CO2 emissions from different soils 

Cumulative CO2 emissions from the unamended soils only differed 
significantly between soil types in trial 3 (wet season, 2018) with the 
lowest emissions from the Sand (1186 � 235 kg CO2–C ha� 1 39 days� 1) 
and the highest from the Acrisols (3234 � 968 kg CO2–C ha� 1 39 days� 1) 
(P < 0.05). Cumulative N2O emissions from the different unamended 
soils were similar in all of the trials (Tables 3–6). Soil N2O fluxes were 
largely similar or below the detection limit (2.3 μg N2O–N m� 2 h� 1) 
during the dry season (trial 1 and 4; Figs. 5 and 8) and the only 
notable fluxes were following a re-wetting by a 28 mm rainfall at the end 
of trial 1. As expected, rainfall did not cause elevated N2O fluxes for the 
sand plots (Fig. 5). During the wet season, soil CO2 and N2O fluxes were 
higher than during the dry season (see Figs. 5–8). 

3.4. Influence of soil type and type of excreta on CO2 and N2O emissions 

In all trials, dung and manure application increased CO2 fluxes from 
all soils, with higher fluxes observed during wet seasons than during dry 
seasons (Figs. 5–8). The highest CO2 flux of 890 � 70 mg CO2–C m� 2 h� 1 

was measured in Acrisols amended with manure in trial 2 (Fig. 6). Urine 
application increased CO2 fluxes more than either dung or water 
application within 1–2 days in all soils. However, the stimulative effect 
of urine additions differed between soils, ranging from 456 � 35 
(Gleysols) to 1464 � 175 mg CO2–C m� 2 h� 1 (Ferralsols) in trial 3 
(Fig. 7), and from 71 � 3 (Acrisols) to 1026 � 81 mg CO2–C m� 2 h� 1 

(Gleysols) in trial 4 (Fig. 8). 
The N2O fluxes also increased following either dung or manure 

application. Among dung and manure applications, the highest N2O flux 
of 461 � 136 μg N2O–N m� 2 h� 1 was measured for manure amended 
Gleysols in trial 2 (Fig. 6). Compared to unamended control soils, cu
mulative N2O emissions from dung application were similar across all 
soils during all trials (Tables 3–6), while during trial 2 the manure 
application resulted in higher cumulative N2O emissions compared to 
the unamended controls only in the Gleysols and Ferralsols (Table 4; 
P < 0.05). 

Neither the water nor the dung application significantly increased 
cumulative N2O emissions relative to the unamended control across all 
soil types and all trials. However, the response to urine additions was 
highly variable across soils (Tables 5 and 6), with fluxes ranging from 
33 � 38 (Ferralsols – trial 4; Fig. 8) to 8760 � 1322 μg N2O–N m� 2 h� 1 

(Acrisols – trial 3; Fig. 7). Soil N2O fluxes were not only larger but also 
lasted for longer (several weeks) for urine as compared to dung additions 
(Figs. 7 and 8). As a result, cumulative N2O emissions were higher for 
urine application compared to dung application in the Acrisols (Trials 3 
and 4) and Sand (only trial 4) (Tables 5 and 6). The urine EF was 
negatively correlated with soil clay content in both dry 
(EF ¼ 0.5936–0.0118 � soil clay content, n ¼ 15, R2 ¼ 0.53, P < 0.05) 
and wet season (EF ¼ 2.5526–0.0466 � soil clay content, n ¼ 15, 
R2 ¼ 0.51, P < 0.05), while positively correlated with soil pH in both dry 
(EF ¼ � 1.3850 þ 0.2367 � soil pH, n ¼ 15, R2 ¼ 0.36, P < 0.05) and wet 
season (EF ¼ � 6.5575 þ 1.2290 � soil pH, n ¼ 15, R2 ¼ 0.60, P < 0.05). 

Table 2 
Water content, carbon and nitrogen concentrations and C/N ratio of dung and nitrogen concentrations of urine applied to soil cores during the four trials.  

Period Season Excreta type Water content (%) C concentration (g C kg� 1 DM) N concentration (g N kg� 1 DM or g N L� 1) C/N ratio 

26-Jul — 25-Aug-16 Dry season dung 82.7 � 0.1a 397.2 � 0.2d 18.10 � 0.12a 22 � 0.1e 

16-Oct — 01-Dec-17 Wet season dung 80.6 � 0.2c 412.0 � 0.2b 13.60 � 0.04c 30 � 0.1c 

manure 81.8 � 0.1b 399.9 � 0.5c 11.93 � 0.03d 34 � 0.1b 

25-Mar � 14-May-18 Wet season dung 81.7 � 0.2b 422.7 � 0.3a 11.75 � 0.09d 36 � 0.3a 

urine – – 6.42 � 0.23A – 
02-Jul — 04-Oct-18 Dry season dung 78.9 � 0.4d 410.3 � 1.5b 14.19 � 0.17b 29 � 0.4d 

urine – – 5.69 � 0.14B – 

Values are mean � standard deviation (n ¼ 3). Different lowercase letters indicate significant differences among dung and manure property and the uppercase letters 
indicate the significant difference of urine N concentration (P < 0.05). 
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3.5. N2O emission factors for dung, manure and urine 

The N2O EF for dung in trial 1 (dry season) was negligible and similar 
among all soil types, varying from 0.00 to 0.01% (Table 3), while the 
N2O EF for dung was in the range of 0.00–0.20% in all other trial periods 
(Tables 4–6). Despite a lower dung N concentration, the dung EF was 
higher during the wet seasons (Trials 2 and 3) than during the dry 
seasons (Trials 1 and 4; P < 0.05). However, the N2O EF for dung did not 
differ across soils. Manure was only applied in the second trial (wet 
season), and during this period the manure N2O EF ranged from 0.03 to 
0.28% with no differences between the soils tested (Table 4). 

In contrast to dung and manure, the urine N2O EF varied largely 
among the different soils during both wet and dry seasons. The highest 
urine N2O EF was observed for Acrisols both in the wet season (1.36%) 
and dry season (0.29%), while the lowest urine N2O EF was measured in 
the Ferralsols (wet season: 0.12%; dry season: 0.01%). Furthermore, in 
both wet and dry seasons, the urine N2O EF was markedly higher for 
Acrisols than EFs for all other soils (Tables 5 and 6; P < 0.05). 

4. Discussion 

4.1. Influence of soil properties on CO2 and N2O emissions after excreta 
application 

In our study, the CO2 fluxes after dung or manure applications were 
similar and no soil type effect was detected indicating that the majority 
of CO2 releases was from the fresh dung or manure itself. This was 
similar to observations by Lin et al. (2009) after yak dung application 
under laboratory conditions. The short-lived CO2 fluxes after urine 
application were likely associated with the rapid hydrolysis of urine urea 
(Ambus et al., 2007; Cai et al., 2017), during which CO2 is released, and 
did not cause any significant difference in cumulative CO2 emissions 
among soils in any of the trials. 

Consistent with our original hypothesis, the N2O EF from both 
manure and dung application to pasture was not affected by the un
derlying soil properties such as e.g. soil C/N ratio, SOC or pH. This was 
likely because the low dung-N concentrations limited N availability for 

N2O formation in the dung itself, and because the rapid crusting of the 
dung hampered incorporation of excreta-N into the soil (Zhu et al., 
2018). However, the presence of termites in some of the soil cores was 
noted shortly after application, which might have altered soil aeration 
and thus influenced N2O production and emission. Also, the termites 
may have transferred some of the dung/manure away from the area 
covered by the chambers. Therefore, it is possible that the presence of 
the termites may have contributed to our observation that soil texture 
and pH did not have measurable effects on soil N2O production after 
dung application. The lack of measurable soil effects was consistent with 
earlier findings by Van der Weerden et al. (2011) who also did not find 
differences in the N2O EF for dung in three contrasting regions with 
differing soil types. 

In line with a recent global meta-analysis (Wang et al., 2018a,b), the 
N2O EF for urine application to soils was negatively correlated with clay 
content. Clay particles hold water tightly in soil aggregates. Moreover, 
clay soils mostly have a low gas diffusivity due to small mean pore sizes 
(Weitz et al., 2001; Gu et al., 2013). Both factors favor anaerobic con
ditions in soils and, thus, might promote complete denitrification to
wards the end product N2, causing lower N2O emissions from clay soils 
(Weitz et al., 2001). In addition, high clay content generally correlates 
with a high cation exchange capacity. As a result, the mineralized NH4

þ

ion can be adsorbed due to the high CEC or even fixed to the clay 
minerals (Chantigny et al., 2004), which decreases soil NH4

þ ion avail
ability for nitrification and, thus, NO3

� ion production. Thus, the soil 
ammonium sorption capacity has been found to affect N2O production in 
soils which otherwise showed largely similar physical and chemical 
properties (Venterea et al., 2015). Consequently, a number of studies 
have found limited N2O production following urine application to 
clay-rich soils (Jarecki et al., 2008; Zhou et al., 2017). Contradicting our 
findings, a study in Canada reported higher urine EFs in a clay-rich soil 
in comparison with a sandy loam soil and argued that the good soil 
aeration in the sandy loam soil limited the N2O production due to 
denitrification (Rochette et al., 2014). 

In addition to soil clay content, soil pH is also an important factor 
controlling the magnitude of N2O emissions after N additions (Wang 
et al., 2018a,b). Wang et al., 2018a,b found in a meta-data analysis on 

Table 3 
Cumulative CO2 and N2O emission and dung N2O EF (% applied excreta-N) over 25 days as affected by addition of 0.5 kg cattle dung to different soil cores in Trial 1 
(01–25 August 2016, dry season).  

Soil type Cumulative CO2 emissions (kg CO2–C ha� 1) Cumulative N2O emissions (g N2O–N ha� 1) N2O EF (%) 

None Dung None Dung Dung 

Gleysols 472 � 100Aa 754 � 148Aa 22.3 � 11.0Aa 49.7 � 44.1Aab 0.01 � 0.01a 

Nitisols 353 � 117Ba 684 � 75Aa 11.6 � 9.3Aa 31.3 � 17.4Aab 0.00 � 0.00a 

Acrisols 518 � 149Aa 743 � 113Aa 71.8 � 71.4Aa 108.5 � 77.6Aa 0.01 � 0.02a 

Cambisols 441 � 69Ba 753 � 125Aa 8.9 � 5.4Aa 29.3 � 7.3Aab 0.00 � 0.00a 

Ferralsols 386 � 82Ba 747 � 132Aa 12.7 � 13.3Aa 21.4 � 15.1Ab 0.00 � 0.00a 

Sand 505 � 140Aa 748 � 121Aa 15.5 � 15.4Aa 20.9 � 21.2Ab 0.00 � 0.00a 

Values are mean � standard deviation (n ¼ 4); different lowercase letters indicate significant differences among soil types within the same treatment and different 
uppercase letters indicate significant differences among treatment within the same soil type (P < 0.05). 

Table 4 
Cumulative CO2 and N2O emission and N2O EF (% applied excreta-N) over 43 days as affected by addition of 0.5 kg cattle dung or 0.5 kg cattle manure to different soil 
cores in Trial 2 (20 October — 01 December 2017, wet season).  

Soil type Cumulative CO2 emissions (kg CO2–C ha� 1) Cumulative N2O emissions (g N2O–N ha� 1) N2O EF (%) 

None Dung Manure None Dung Manure Dung Manure 

Gleysols 2028 � 226Aa 2635 � 520Aa 2951 � 573Aa 127 � 37Ba 579 � 296ABa 916 � 86Aa 0.13 � 0.08Aa 0.28 � 0.03Aa 

Nitisols 1890 � 455Aa 2555 � 101Aa 2705 � 232Aa 150 � 38Aa 644 � 448Aa 765 � 56Aa 0.14 � 0.13Aa 0.22 � 0.03Aa 

Acrisols 1997 � 134Aa 3034 � 661Aa 3024 � 526Aa 218 � 47Aa 571 � 253Aa 709 � 479Aa 0.10 � 0.06Aa 0.17 � 0.18Aa 

Cambisols 1945 � 405Aa 3093 � 544Aa 3163 � 1041Aa 110 � 30Aa 818 � 616Aa 814 � 538Aa 0.20 � 0.17Aa 0.25 � 0.18Aa 

Ferralsols 1540 � 286Ba 3092 � 833Aa 2949 � 711ABa 158 � 148Ba 620 � 154ABa 916 � 403Aa 0.13 � 0.07Aa 0.27 � 0.09Aa 

Sand 1959 � 1273Aa 2273 � 328Aa 2501 � 729Aa 179 � 112Aa 335 � 203Aa 264 � 96Aa 0.05 � 0.07Aa 0.03 � 0.05Aa 

Values are mean � standard deviation (n ¼ 4); there was no significant differences among soil types within the same treatment; different uppercase letters indicate 
significant differences among treatment within the same soil type (P < 0.05). 
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N2O emissions from excreta applied to grasslands, that the magnitude of 
N2O emissions is negatively correlated with pH, i.e. that emissions in
crease at lower soil pHs. However, Khan et al., (2011) reported higher 
cumulative N2O fluxes from bovine urine applied onto limed acid soils 
than on non-limed acid soils. The fact that all the soils except for the 
sand used in our study (pH 8.4, not included in the analysis) were 
slightly acidic and fairly similar in pH (pH range: 5.3–6.4) might explain 
why we found a positive correlation between urine EF and soil pH in 
both dry and wet season. 

Contrary to our expectations, soil C and soil C/N ratio did not have 
any effect on urine N2O EFs in our study, contrary to Pelster et al. (2012) 
who reported a potential C-limitation of soil N2O emissions after N 
fertilizer application to temperate soils in Canada. However, because of 
the high C content in our soils (35 g kg� 1 compared to 19 g kg� 1 in the 
previous study), soil N2O production was likely N- and not C-limited. 
This would also explain why urine, but not dung or manure additions 
significantly stimulated N2O emissions as urine N is quickly available as 
urease is ubiquitous in all soils (Van Groenigen et al., 2005b). Moreover, 
not only N but also significant amounts of water was added with urine 
applications, which increases soil moisture and soil microbial activity 

(Marsden et al., 2016). It is noteworthy that in our study water-only 
additions did not stimulate N2O emissions while additions of the same 
amounts of urine did (Figs. 7 and 8), indicating that although significant 
changes in soil moisture were observed after water application, the ef
fect of the water was minor compared to the urine-N addition effect. As 
the soil moisture was generally below 60% water filled pore space 
(WFPS), it is likely that at least in the lighter textured soils nitrification 
was the dominant process of N2O production after excreta application 
(Bell et al., 2015). Generally, high soil moisture promotes N2O pro
duction, as shown in our study when comparing dry and wet season 
fluxes, but soil moisture can also be related to soil properties causing 
differences in N2O fluxes between different soil types. For instance, De 
Klein et al. (2003) in a study in New Zealand grasslands reported an 
urine EF of 0.5% for a well-drained stony silt loam soil and 3.7% for a 
moderately-drained silt loam soil. However, Van der Weerden et al. 
(2011) reported that N2O emissions did not always relate to drainage 
class, when summarizing experimental findings obtained for well- and 
poor-drained silt loam soils at three sites in New Zealand. Balaine et al. 
(2013) highlighted that the relative soil gas diffusivity is a key indicator 
to rank soil N2O emission potentials. 

Fig. 5. Dynamics of (a) CO2 and (b) N2O daily fluxes from different soil cores to which dung was added (left panel) compared to the same soils without excreta 
application (right panel) (Trial 1). The lower panels show the observed temporal dynamics of (c) mean daily soil moisture (0.05 m depth), (d) soil temperature 
(0.05 m depth) measured during gas sampling. Each flux value represents the mean of three chambers (�SE). 
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4.2. Influence of season (wet vs dry) and time elapsed since excreta 
application on CO2 and N2O emissions 

The higher soil CO2 fluxes after excreta application in the wet season 
compared to the dry season was likely caused by the higher soil mois
ture, since temperature was similar during all four trials, as both soil 
moisture and temperature are controlling factors for CO2 production 
(Rochette and Gregorich, 1998; Ginting et al., 2003). Similar results had 
been observed by Zhu et al. (2018) after cattle dung application to an 
East African grassland. 

A one year field observation in Canada showed that most of the 
emissions occur within a few weeks after excreta application, although 
smaller peaks may occur later (Rochette et al., 2014). In our study, the 
flux patterns after dung application were consistent with a previous 
study for tropical rangeland soils amended with dung by Zhu et al. 
(2018). They reported that N2O fluxes stayed elevated for around 14 
days after dung application. The rather restricted period of elevated N2O 
emissions after dung application can likely be attributed to the relatively 
low mineral N content of the dung, fast crust formation and the wide 
dung C/N ratio (22–36, Table 2), which likely promoted N immobili
zation during C decomposition (Van der Weerden et al., 2011; Zhu et al., 
2018). 

In the present study, N2O fluxes returned to background levels within 
39–73 observation days after urine application, which is consistent with 
Sordi et al. (2014) who reported 41 � 10 days of elevated emissions 
following cattle urine application to a subtropical pasture of Brazil 
during three different seasons, after which the N2O fluxes rapidly 
diminished and returned to background levels. This was also consistent 
with another study in New Zealand, which showed that soil NH4

þ-N 
concentrations returned to background concentrations after 27 days, 
while elevated soil NO3

� concentrations were observed for around 40 
days after cattle urine application (Clough et al., 2009). Similarly, a 
study carried out in the UK reported that the majority of N2O emissions 
occurred during the first 20 days after sheep urine application onto 
Eutric Cambisol mesocosms (Marsden et al., 2016). Thus, the frequent 
gas sampling and the length of the observation period in our study 
should have been sufficient to capture most of the N2O emissions caused 
by excreta application. 

The higher N concentration and lower C/N ratio of the dung used 
during the dry seasons (C/N ratio: 22–29, Table 2) compared to the dung 
used during the rainy seasons (C/N ratio: 30–36, Table 2) should have 
translated into more substrate for denitrification and generally greater 
N2O production during the dry season; however, the dung N2O EFs were 
in fact lower during the dry seasons (range 0.00–0.04%) than during the 

Fig. 6. Dynamics of (a) CO2–C and (b) N2O–N daily fluxes from different soil cores to which manure (left panel) or dung (middle panel) was added compared to soils 
without excreta application (right panel) (Trial 2). The lower panels show temporal dynamics of (c) mean daily soil moisture (0.05 m depth) and (d) soil temperature 
(0.05 m depth) measured during gas sampling. Each flux value represents the mean of three chambers (�SE). 
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wet seasons (0.02–0.20%). This was likely due to delayed dung crust 
formation due to rainfall (Mazzetto et al., 2014) and higher dung 
mineralization activity during the wet seasons with more favorable soil 
environmental conditions for N2O production (see soil moisture levels in 
Figs. 5–8), which is in agreement with our hypothesis. The magnitude of 
total rainfall may cause differences in the amount of anaerobic micro
sites in the soil/dung, which could provide suitable conditions for 
further reduction of the microbially-produced N2O to N2 (Sordi et al., 
2014; Zhu et al., 2018). This may explain why the dung N2O EFs during 
trial 3 (range: 0.02–0.15%), which had 596 mm rain, were lower than 
for the other wet season period (trial 2; range: 0.10–0.20%), during 
which only 83 mm of rainfall. Furthermore, this lower EF might also 
have been related to increased N leaching as a consequence of the heavy 
rainfalls, although this remains speculation as we did not measure N 
leaching. 

The higher urine N2O EF in wet season than in dry season was similar 
to other studies in Brazil and Kenya (Sordi et al., 2014; Tully et al., 
2017). Seasonal variations for urine N2O EFs was also measured under a 
temperate climate (Van Groenigen et al., 2005b), although the authors 
attributed this seasonality to the seasonality of background N2O emis
sions. Nevertheless, it should be noted that temperate climates show 
large intra-annual changes in temperature with less seasonality in 

precipitation rates. In Kenya, air temperature only changes minimally 
during the year, whereas rainfalls have a distinct seasonality (i.e. a clear 
separation between dry and wet season). Soil moisture, which exerts 
significant effects on soil N2O emissions through modulating soil O2 
concentration and nutrient availability (Butterbach-Bahl et al., 2013), 
typically mirrors rainfall distribution. Therefore, our observation that 
excreta effects on soil N2O emissions were generally stronger in the wet 
season is not surprising, as soil moisture content was generally higher 
during the wet season soils favouring coupled nitrification denitrifica
tion processes, i.e. the main N2O production pathway after urine 
application (Monaghan and Barraclough, 1993). During the dry season, 
N mineralization and nitrification may be moisture limited, while 
denitrification would be unlikely as it is limited by the low soil moisture 
values (Linn and Doran, 1984). 

4.3. Influence of excreta type on CO2 and N2O emissions 

We confirmed our fourth hypothesis that both cattle urine and dung 
applications would stimulate CO2 fluxes. The cumulative CO2 emissions 
after dung application were similar to or slightly higher than after urine 
application in our study depending on the amount of C applied (Bertora 
et al., 2008), which is consistent with Lin et al. (2009) who also reported 

Fig. 7. Dynamics of (a) CO2–C and (b) N2O–N daily fluxes from different soil cores to which dung (left panel), urine (second-left panel), water (second-right panel), 
or nothing (right panel) was added (Trial 3). The lower panels show temporal dynamics of (c) mean daily soil moisture (0.05 m depth) and (d) soil temperature 
(0.05 m depth) measured during gas sampling. Each flux value represents the mean of three chambers (�SE). 
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higher cumulative CO2 emissions from yak dung than from yak urine. 
The N2O EF for dung application (range: 0.00–0.20%, 

mean ¼ 0.06%) was consistent with another study in Kenya that re
ported dung N2O EF ranged from 0.00 to 0.04% (Tully et al., 2017). 
However, our mean EF was lower than the value of 0.28% synthesized 
for cattle dung patches through a global meta-analysis by Cai and 
Akiyama (2016). We suggest that the lower N2O EF for cattle dung in 
Kenya in the present study compared to the global mean was caused by 
low quality feeds (i.e. low protein content) (Wassie et al., 2019) that 
resulted in lower N excretion and a higher C/N ratio in dung patches. In 
our study the dung and manure C/N ratios ranged from 22 to 36, much 
higher than the C/N ratios reported for dung/manure from cattle in 
temperate regions (<20, see Zhu et al., 2018). Moreover, the soils have 
low N concentrations (<0.39 g N kg� 1 DM, Table 1), which could result 
in rapid immobilization of the applied N causing low NO3

� availability 
for denitrification. Furthermore, higher solar radiation and high vapor 
pressure deficits in the Kenyan highlands leads to fast crust formation on 
the manure and dung and thus less incorporation of excreta N into the 
soil (Zhu et al., 2018). 

The manure (i.e. a mixture of dung and urine) EF of 0.23% was also 
similar to a previous study in Kenya that reported a manure EF for the 
wet season of 0.15% (Tully et al., 2017). The higher manure EF in the 
present study compared to the dung EF might be explained by 

synergistic effects of labile C from the dung and inorganic N from the 
urine in manure, which combined with higher water contents likely 
promoted N2O formation in soils and the manure itself (Hyde et al., 
2016). 

The observed range of urine EFs in our study (0.01–1.36%, with a 
mean of 0.29%) were within the range of EFs determined by studies 
carried out in Brazil (0.19–0.33%) (Barneze et al., 2014; Sordi et al., 
2014) and Kenya (0.05–0.21%) (Tully et al., 2017). Cattle urine EFs of 
more than 3% were reported for an incubation experiment conducted at 
25 �C and 80% relative humidity in Brazil (Cardoso et al., 2017). 
However, this previous study might be misleading, as the high tem
perature and humidity conditions likely favored N2O production while 
the incubation system used by Cardoso et al. (2017) did not allow for N 
leaching; a major N loss pathway of urine N. In their review, Cai and 
Akiyama (2016) estimated that at least 17.8% of applied urine N is 
leached under field conditions. Another recent study from Kenya that 
simulated a 20 mm rainfall event after application, reported a cattle 
urine EF of 1.2%, which can be ascribed to more favorable soil condition 
to N2O production after rainfall (Pelster et al., 2016). As synthesized by 
Cai and Akiyama (2016) the average N2O EF for cattle urine was 0.76%, 
i.e. approx. three times higher than in our study. Although the N 
application rate of 845 and 749 kg N ha� 1 applied as urine in our study 
was in the range of most studies analyzed in the global meta-analysis 

Fig. 8. Dynamics of (a) CO2–C and (b) N2O–N daily fluxes from different soil cores to which water, urine or dung was added (Trial 4). The lower panels show the 
observed temporal dynamics of (c) mean daily soil moisture (0.05 m depth), (d) soil temperature (0.05 m depth) measured during gas sampling. Each flux value 
represents the mean of three chambers (�SE). 
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(Cai and Akiyama, 2016), the soil properties and climate conditions in 
our study differed from most of the studies in the Cai and Akiyama re
view, which were predominantly data from temperate regions. 

As the IPCC default value does not disaggregate the EF for urine and 
dung, we cannot compare the separate EFs for urine and dung in our 
study with the default value of 2%. However, the N partitioning between 
dung and urine for cattle excreta in SSA has been reported to be around 
2:1 (Rufino et al., 2006), which is consistent with a recent study in 
Kenya by Wassie et al. (2019) who found that the N partitioning between 
dung and urine varied from ~1:1 to ~2:1. Those ratios differ signifi
cantly from estimates for western European countries (40:60) (Chad
wick et al., 2018). If we apply the split as determined by Rufino et al. 
(2006) (i.e. an excreta-N ratio of dung to urine of 66:34), the overall N2O 
EF for cattle excreta on grassland ranges from 0.06 to 0.30% depending 
on the soil type, with an average of 0.14%. Thus, the EFs found here are 
approximately one order of magnitude lower than the IPCC default 
value or the EF determined for livestock excreta in the tropics and 
subtropics by Albanito et al. (2017) of 1.2%. 

5. Conclusion 

Here we showed that while soil type had no influence on CO2 
emissions after excreta application it did affect N2O emissions after 
urine, but not manure or dung, application. The differences between 
soils in N2O emissions following manure application were likely related 
to soil properties such as texture and soil pH. Environmental conditions 
(wet and dry season), and the N content of excreta did affect N2O losses, 
with a higher N2O EF (0.29%) from urine application versus application 
of cattle dung (EF ¼ 0.06%). Based on the excreta N split estimated by 
existing literature in SSA, the overall mean N2O EF for cattle excreta 
deposited onto grassland was 0.14%, less than 10% of the IPCC default 
value (2%). Our findings suggests that current IPCC methodology pro
vides a substantial overestimation of the N2O EF for cattle excreta on 
tropical rangeland. In order to improve estimates and to identify 
adequate, region specific mitigation options to reduce emissions from 
livestock excreta, environmental conditions should be taken into ac
count when estimating N2O losses. 
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