59 research outputs found

    Measurement of the CKM angle γγ in B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm \to D π^\pm decays with DKS0h+hD \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+πK_{\mathrm S}\pi^+\pi^- and KSK+KK_{\mathrm S}K^+K^- (commonly denoted KSh+hK_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle γ\gamma. Using a data sample corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13TeV13\,\text{TeV} with the LHCb experiment, γ\gamma is measured to be (68.75.1+5.2)\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, δBDK\delta_B^{DK}, and δBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass

    Study of the doubly charmed tetraquark T+cc

    Get PDF
    Quantum chromodynamics, the theory of the strong force, describes interactions of coloured quarks and gluons and the formation of hadronic matter. Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. Particles with an alternative quark content are known as exotic states. Here a study is reported of an exotic narrow state in the D0D0π+ mass spectrum just below the D*+D0 mass threshold produced in proton-proton collisions collected with the LHCb detector at the Large Hadron Collider. The state is consistent with the ground isoscalar T+cc tetraquark with a quark content of ccu⎯⎯⎯d⎯⎯⎯ and spin-parity quantum numbers JP = 1+. Study of the DD mass spectra disfavours interpretation of the resonance as the isovector state. The decay structure via intermediate off-shell D*+ mesons is consistent with the observed D0π+ mass distribution. To analyse the mass of the resonance and its coupling to the D*D system, a dedicated model is developed under the assumption of an isoscalar axial-vector T+cc state decaying to the D*D channel. Using this model, resonance parameters including the pole position, scattering length, effective range and compositeness are determined to reveal important information about the nature of the T+cc state. In addition, an unexpected dependence of the production rate on track multiplicity is observed

    Assessing mobile ions contributions to admittance spectra and current-voltage characteristics of 3D and 2D/3D perovskite solar cells

    Get PDF
    Recently, the 2D perovskite layer is employed as a capping/passivating layer in the perovskite solar cells (PSCs). The 2D perovskite layer is prepared by inserting a large-sized hydrophobic cation spacer into the perovskite crystal lattice. The large-sized cation in the 2D perovskite lattice can successfully suppress the moisture intrusion and hence improve the stability of the PSCs. However, a deep understanding of the interfacial mechanisms at the 2D/3D heterojunction and the relative contributions of the mobile ions and trapped charge carriers is still lacking. In this work, deep levels transient spectroscopy (DLTS) and reverse DLTS (RDLTS) have been performed to characterize the n-i-p structured 3D and 2D/3D PSCs. DLTS and RDLTS have been used to distinguish between the spectral contribution made by mobile ionic species, electron/hole traps, and to investigate the presence of ordinary deep electron and hole traps in the bandgap of perovskite. Besides, the PSCs have been characterized by photoinduced voltage transient spectroscopy (PIVTS) to study the decay of the open-circuit voltage (VOC) under illumination. For both 3D and 2D/3D PSCs, the contribution of mobile ions was found to be dominant; however, in the case of 2D/3D samples, the intensity of the mobile ions signal was several times lower. The lower intensity can be correlated with a lower amplitude of slow tails in VOC decay curves in 2D/3D solar cells as compared to 3D solar cells. The PIVTS study also endorses the 2D/3D structures as more robust than the 3D structures.Scopu

    Effects of InAlN underlayer on deep traps detected in near-UV InGaN/GaN single quantum well light-emitting diodes

    No full text
    Two types of near-UV light-emitting diodes (LEDs) with an InGaN/GaN single quantum well (QW) differing only in the presence or absence of an underlayer (UL) consisting of an InAlN/GaN superlattice (SL) were examined. The InAlN-based ULs were previously shown to dramatically improve internal quantum efficiency of near-UV LEDs, via a decrease in the density of deep traps responsible for nonradiative recombination in the QW region. The main differences between samples with and without UL were (a) a higher compensation of Mg acceptors in the p-GaN:Mg contact layer of the sample without UL, which correlates with the presence of traps with an activation energy of 0.06\u2009eV in the QW region, (b) the presence of deep electron traps with levels 0.6\u2009eV below the conduction band edge (Ec) (ET1) and at Ec 0.77\u2009eV (ET2) in the n-GaN spacer underneath the QW, and the presence of hole traps (HT1) in the QW, 0.73\u2009eV above the valence band edge in the sample without UL (no traps could be detected in the sample with UL), and (c) a high density of deep traps with optical ionization energy close to 1.5\u2009eV for the LEDs without UL. Irradiation with 5\u2009MeV electrons led to a strong decrease in the electroluminescence (EL) intensity in the LEDs without UL, while for the samples with UL, such irradiation had little effect on the EL signal at high driving current, although the level of driving currents necessary to have a measurable EL signal increased by about an order of magnitude. This is despite the 5 times higher starting EL signal of the sample with UL. Irradiation also led to the appearance in the LEDs with UL of the ET1 and HT1 deep traps, but with concentration much lower than without the UL, and to a considerable increase in the Mg compensation rati

    Deep traps in InGaN/GaN single quantum well structures grown with and without InGaN underlayers

    No full text
    The electrical properties and deep trap spectra were compared for near-UV GaN/InGaN quantum well (QW) structures grown on free-standing GaN substrates. The structures differed by the presence or absence of a thin (110 nm) InGaN layer inserted between the high temperature GaN buffer and the QW region. Capacitance-voltage profiling with monochromatic illumination showed that in the InGaN underlayer (UL), the density of deep traps with optical threshold near 1.5 eV was much higher than in the QW and higher than for structures without InGaN. Irradiation with 5 MeV electrons strongly increased the concentration of these 1.5 eV traps in the QWs, with the increase more pronounced for samples without InGaN ULs. The observations are interpreted using the earlier proposed model explaining the impact of In-containing underlayers by segregation of native defects formed during growth of GaN near the surface and trapping of these surface defects by In atoms of the InGaN UL, thus preventing them from infiltrating the InGaN QW region. Deep level transient spectroscopy (DLTS) also revealed major differences in deep trap spectra in the QWs and underlying layers of the samples with and without InGaN ULs. Specifically, the introduction of the InGaN UL stimulates changing the dominant type of deep traps. Irradiation increases the densities of these traps, with the increase being more pronounced for samples without the InGaN UL. It is argued that light emitting diodes (LEDs) with InGaN UL should demonstrate a higher radiation tolerance than LEDs without InGaN UL

    Analysis of Neutral B-Meson Decays into Two Muons

    Get PDF
    Branching fraction and effective lifetime measurements of the rare decay Bs0μ+μB^0_s\to\mu^+\mu^- and searches for the decays B0μ+μB^0\to\mu^+\mu^- and Bs0μ+μγB^0_s\to\mu^+\mu^-\gamma are reported using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 77 TeV, 88 TeV and 1313 TeV, corresponding to a luminosity of 99 fb1^{-1}. The branching fraction B(Bs0μ+μ)=(3.090.430.11+0.46+0.15)×109{\mathcal{B}}(B^0_s\to\mu^+\mu^-)=\left(3.09^{+0.46+0.15}_{-0.43-0.11}\right)\times 10^{-9} and the effective lifetime τ(Bs0μ+μ)=(2.07±0.29±0.03)\tau(B^0_s\to\mu^+\mu^-)=(2.07\pm 0.29\pm 0.03) are measured, where the first uncertainty is statistical and the second systematic. No significant signal for B0μ+μB^0\to\mu^+\mu^- and Bs0μ+μγB^0_s\to\mu^+\mu^-\gamma decays is found and upper limits B(B0μ+μ)<2.6×1010\mathcal{B}(B^0\to\mu^+\mu^-)<2.6\times 10^{-10} and B(Bs0μ+μγ)<2.0×109\mathcal{B}(B^0_s\to\mu^+\mu^-\gamma)<2.0\times 10^{-9} at the 95% CL are determined, where the latter is limited to the range mμμ>4.9m_{\mu\mu} > 4.9 GeV/c2/c^2. The results are in agreement with the Standard Model expectations.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-007.html (LHCb public pages
    corecore