852 research outputs found

    Stepwise evolution of Elk-1 in early deuterostomes

    Get PDF
    Metazoans have multiple ETS paralogues with overlapping or indiscriminate biological functions. Elk- 1, one of three mammalian Ternary Complex Factors (TCFs), is a well-conserved, ETS domain-containing transcriptional regulator of mitogen-responsive genes that operates in concert with Serum Response Factor (SRF). Nonetheless, its genetic role remains unresolved because the elk-1 gene could be deleted from the mouse genome seemingly without adverse effect. Here we have explored the evolution of Elk-1 to gain insight into its conserved biological role. We identified antecedent Elk-1 proteins in extant early metazoans and used amino acid sequence alignments to chart the appearance of domains characteristic of human Elk-1. We then performed biochemical studies to determine whether putative domains apparent in the Elk-1 protein of a primitive hemichordate were functionally orthologous to those of human Elk-1. Our findings imply the existence of primordial Elk-1 proteins in primitive deuterostomes that could operate as mitogen-responsive ETS transcription factors but not as TCFs. The role of TCF was acquired later, but presumably prior to the whole genome duplications in the basal vertebrate lineage. Thus its evolutionary origins link Elk-1 to the appearance of mesoderm

    CHADS 2

    Get PDF
    Vascular events are one of the major causes of death in case of Cushing’s syndrome (CS). However, due to the relative low frequency of CS, it is hard to perform a risk assessment for these events. As represented congestive heart failure (C), hypertension (H), age (A), diabetes (D), and stroke (S), the CHADS2 score is now accepted to classify the risk of major adverse cardiovascular events (MACEs) in patients with atrial fibrillation. In this study, participants were enrolled from the National Health Research Institute Database (NHIRD) of Taiwan, and we reviewed 551 patients with their sequential clinically diagnosed CS data between 2002 and 2009 in relation to MACEs risk using CHADS2 score. Good correlation could be identified between the CS and CHADS2 score (AUC=0.795). Our results show that patients with CS show significantly higher risk of vascular events and the CHADS2 score could be applied for MACEs evaluation. Adequate lifestyle modifications and aggressive cardiovascular risks treatment are suggested for CS patients with higher CHADS2 score

    Molecular identification, cloning and characterization of transmitted/founder HIV-1 subtype A, D and A/D infectious molecular clones

    Get PDF
    AbstractWe report the molecular identification, cloning and initial biological characterization of 12 full-length HIV-1 subtype A, D and A/D recombinant transmitted/founder (T/F) genomes. T/F genomes contained intact canonical open reading frames and all T/F viruses were replication competent in primary human T-cells, although subtype D virus replication was more efficient (p<0.05). All 12 viruses utilized CCR5 but not CXCR4 as a co-receptor for entry and exhibited a neutralization profile typical of tier 2 primary virus strains, with significant differences observed between subtype A and D viruses with respect to sensitivity to monoclonal antibodies VRC01, PG9 and PG16 and polyclonal subtype C anti-HIV IgG (p<0.05 for each). The present report doubles the number of T/F HIV-1 clones available for pathogenesis and vaccine research and extends their representation to include subtypes A, B, C and D

    PTEN Depletion Decreases Disease Severity and Modestly Prolongs Survival in a Mouse Model of Spinal Muscular Atrophy.

    Get PDF
    Spinal muscular atrophy (SMA) is the second most common genetic cause of death in childhood. However, no effective treatment is available to halt disease progression. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene. We previously reported that PTEN depletion leads to an increase in survival of SMN-deficient motor neurons. Here, we aimed to establish the impact of PTEN modulation in an SMA mouse model in vivo. Initial experiments using intramuscular delivery of adeno-associated vector serotype 6 (AAV6) expressing shRNA against PTEN in an established mouse model of severe SMA (SMNΔ7) demonstrated the ability to ameliorate the severity of neuromuscular junction pathology. Subsequently, we developed self-complementary AAV9 expressing siPTEN (scAAV9-siPTEN) to allow evaluation of the effect of systemic suppression of PTEN on the disease course of SMA in vivo. Treatment with a single injection of scAAV9-siPTEN at postnatal day 1 resulted in a modest threefold extension of the lifespan of SMNΔ7 mice, increasing mean survival to 30 days, compared to 10 days in untreated mice. Our data revealed that systemic PTEN depletion is an important disease modifier in SMNΔ7 mice, and therapies aimed at lowering PTEN expression may therefore offer a potential therapeutic strategy for SMA

    Experience-based VAS values for EQ-5D-3L health states in a national general population health survey in China

    Get PDF
    Purpose: To investigate the feasibility of deriving experience-based visual analogue scale (VAS) values for EQ-5D-3L health states using national general population health survey data in China. Methods: The EQ-5D-3L was included in the National Health Services Survey (n = 120,709, aged 15–103 years) to measure health-related quality of life. The respondents reported their current health status on a VAS and completed the EQ-5D-3L questionnaire, enabling modelling of the association between the experience-based VAS values and self-reported problems on EQ-5D dimensions and severity levels. Results: VAS values were generally negatively associated with problems reported on the EQ-5D dimensions, and the anxiety/depression dimension had the greatest impact on VAS values. A previously obtained value for dead allowed the values for all 243 EQ-5D-3L health states to be transformed to the 0–1 scale (0 = dead, 1 = full health). Conclusions: This study presents the feasibility of deriving an experience-based VAS values for EQ-5D-3L health states in China. The analysis of these VAS data raises more fundamental issues concerning the universal nature of the classification system and the extent to which Chinese respondents utilise the same concepts of health as defined by this classification system

    Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding

    Get PDF
    BACKGROUND: At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species. METHODOLOGY/PRINCIPAL FINDINGS: We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnS(UGA)-trnG(UCC), petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnS(UGA)-trnG(UCC), trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (Ï€ values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species. SIGNIFICANCE/CONCLUSIONS: Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Tumor Therapy Applying Membrane-bound Form of Cytokines

    Get PDF
    Tumor therapy using cytokines has been developed for last two decades. Several recombinant cytokines and tumor cell vaccines produced by cytokine gene transfer have been in clinical trials, but several side effects hamper routine clinical applications. Many cytokines are originally expressed as membrane-bound form and then processed to secretory form exerting paracrine effects. Though functional differences of these two types of cytokines are elusive yet, the membrane-bound form of cytokine may exert its effects on restricted target cells as a juxtacrine, which are in physical contacts. With the efforts to improve antitumor activities of cytokines in cancer patients, developing new strategies to alleviate life-threatening side effects became an inevitable goal of tumor immunologists. Among these, tumor cell vaccines expressing cytokines as membrane-bound form on tumor cell surface have been developed by genetic engineering techniques with the hope of selective stimulation of the target cells that are in cell-to-cell contacts. In this review, recent progress of tumor cell vaccines expressing membrane-bound form of cytokines will be discussed
    • …
    corecore