49 research outputs found

    Dimethyl acridine-based self-assembled monolayer as a hole transport layer for highly efficient inverted perovskite solar cells

    Get PDF
    Self-assembled monolayers (SAMs) have recently emerged as excellent hole transport materials in inverted perovskite solar cells (PSCs) owing to their ability to minimize parasitic absorption, regulate energy level alignment, and passivate perovskite defects. Herein, we design and synthesize a novel dimethyl acridine-based SAM, [2-(9,10-dihydro-9,9-dimethylacridine-10-yl)ethyl]phosphonic acid (2PADmA), and employ it as a hole-transporting layer in inverted PSCs. Experimental results show that the 2PADmA SAM can modulate perovskite crystallization, facilitate carrier transport, passivate perovskite defects, and reduce nonradiative recombination. Consequently, the 2PADmA-based device achieves an enhanced power conversion efficiency (PCE) of 24.01% and an improved fill factor (FF) of 83.92% compared to the commonly reported [2-(9H-carbazol-9-yl)ethyl] phosphonic acid (2PACz)-based control device with a PCE of 22.32% and FF of 78.42%, while both devices exhibit comparable open-circuit voltage and short-circuit current density. In addition, 2PADmA-based devices exhibit outstanding dark storage and thermal stabilities, retaining approximately ~98% and 87% of their initial PCEs after 1080 h of dark storage and 400 h of heating at 85 °C, respectively, both considerably superior to the control device

    Multi-tissue integrative analysis of personal epigenomes

    Get PDF
    Evaluating the impact of genetic variants on transcriptional regulation is a central goal in biological science that has been constrained by reliance on a single reference genome. To address this, we constructed phased, diploid genomes for four cadaveric donors (using long-read sequencing) and systematically charted noncoding regulatory elements and transcriptional activity across more than 25 tissues from these donors. Integrative analysis revealed over a million variants with allele-specific activity, coordinated, locus-scale allelic imbalances, and structural variants impacting proximal chromatin structure. We relate the personal genome analysis to the ENCODE encyclopedia, annotating allele- and tissue-specific elements that are strongly enriched for variants impacting expression and disease phenotypes. These experimental and statistical approaches, and the corresponding EN-TEx resource, provide a framework for personalized functional genomics

    Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis.

    Get PDF
    Long non-coding RNAs (lncRNAs) are a growing focus of cancer genomics studies, creating the need for a resource of lncRNAs with validated cancer roles. Furthermore, it remains debated whether mutated lncRNAs can drive tumorigenesis, and whether such functions could be conserved during evolution. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we introduce the Cancer LncRNA Census (CLC), a compilation of 122 GENCODE lncRNAs with causal roles in cancer phenotypes. In contrast to existing databases, CLC requires strong functional or genetic evidence. CLC genes are enriched amongst driver genes predicted from somatic mutations, and display characteristic genomic features. Strikingly, CLC genes are enriched for driver mutations from unbiased, genome-wide transposon-mutagenesis screens in mice. We identified 10 tumour-causing mutations in orthologues of 8 lncRNAs, including LINC-PINT and NEAT1, but not MALAT1. Thus CLC represents a dataset of high-confidence cancer lncRNAs. Mutagenesis maps are a novel means for identifying deeply-conserved roles of lncRNAs in tumorigenesis

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Landscape and variation of novel retroduplications in 26 human populations

    No full text
    <div><p>Retroduplications come from reverse transcription of mRNAs and their insertion back into the genome. Here, we performed comprehensive discovery and analysis of retroduplications in a large cohort of 2,535 individuals from 26 human populations, as part of 1000 Genomes Phase 3. We developed an integrated approach to discover novel retroduplications combining high-coverage exome and low-coverage whole-genome sequencing data, utilizing information from both exon-exon junctions and discordant paired-end reads. We found 503 parent genes having novel retroduplications absent from the reference genome. Based solely on retroduplication variation, we built phylogenetic trees of human populations; these represent superpopulation structure well and indicate that variable retroduplications are effective population markers. We further identified 43 retroduplication parent genes differentiating superpopulations. This group contains several interesting insertion events, including a SLMO2 retroduplication and insertion into CAV3, which has a potential disease association. We also found retroduplications to be associated with a variety of genomic features: (1) Insertion sites were correlated with regular nucleosome positioning. (2) They, predictably, tend to avoid conserved functional regions, such as exons, but, somewhat surprisingly, also avoid introns. (3) Retroduplications tend to be co-inserted with young L1 elements, indicating recent retrotranspositional activity, and (4) they have a weak tendency to originate from highly expressed parent genes. Our investigation provides insight into the functional impact and association with genomic elements of retroduplications. We anticipate our approach and analytical methodology to have application in a more clinical context, where exome sequencing data is abundant and the discovery of retroduplications can potentially improve the accuracy of SNP calling.</p></div

    Overlap between retroduplication insertion sites and genomic features/functional elements.

    No full text
    <p>A—Aggregation plot around insertion sites with strongly positioned nucleosomes. B—Association between discordant read clusters that only have support on one side and L1 element subfamilies. Fold change and empirical p-values were obtained from permutations tests. *** indicates adjusted p-value < 0.001. C—Overlap between genomic elements and retroduplication insertion sites. The enrichment of overlap is expressed as log2 fold change of the observed overlap statistic versus the mean of its null distribution. Positive (negative) log2 fold change indicates enriched (depleted) genomic element-insertion overlap, compared to random background. * indicates empirical p-value ≤ 0.002.</p
    corecore