6,713 research outputs found
Interconnecting bilayer networks
A typical complex system should be described by a supernetwork or a network
of networks, in which the networks are coupled to some other networks. As the
first step to understanding the complex systems on such more systematic level,
scientists studied interdependent multilayer networks. In this letter, we
introduce a new kind of interdependent multilayer networks, i.e.,
interconnecting networks, for which the component networks are coupled each
other by sharing some common nodes. Based on the empirical investigations, we
revealed a common feature of such interconnecting networks, namely, the
networks with smaller averaged topological differences of the interconnecting
nodes tend to share more nodes. A very simple node sharing mechanism is
proposed to analytically explain the observed feature of the interconnecting
networks.Comment: 9 page
Signatures of natural selection between life cycle stages separated by metamorphosis in European eel
Received: 16 December 2014, Accepted: 6 July 2015, Published: 13 August 2015[Background]
Species showing complex life cycles provide excellent opportunities to study the genetic associations between life cycle stages, as selective pressures may differ before and after metamorphosis. The European eel presents a complex life cycle with two metamorphoses, a first metamorphosis from larvae into glass eels (juvenile stage) and a second metamorphosis into silver eels (adult stage). We tested the hypothesis that different genes and gene pathways will be under selection at different life stages when comparing the genetic associations between glass eels and silver eels.[Results]
We used two sets of markers to test for selection: first, we genotyped individuals using a panel of 80 coding-gene single nucleotide polymorphisms (SNPs) developed in American eel; second, we investigated selection at the genome level using a total of 153,423 RAD-sequencing generated SNPs widely distributed across the genome. Using the RAD approach, outlier tests identified a total of 2413 (1.57 %) potentially selected SNPs. Functional annotation analysis identified signal transduction pathways as the most over-represented group of genes, including MAPK/Erk signalling, calcium signalling and GnRH (gonadotropin-releasing hormone) signalling. Many of the over-represented pathways were related to growth, while others could result from the different conditions that eels inhabit during their life cycle.[Conclusions]
The observation of different genes and gene pathways under selection when comparing glass eels vs. silver eels supports the adaptive decoupling hypothesis for the benefits of metamorphosis. Partitioning the life cycle into discrete morphological phases may be overall beneficial since it allows the different life stages to respond independently to their unique selection pressures. This might translate into a more effective use of food and niche resources and/or performance of phase-specific tasks (e.g. feeding in the case of glass eels, migrating and reproducing in the case of silver eels).We acknowledge funding from the Danish Council for Independent Reasearch, Natural Sciences (grant 09-072120 to MMH).Peer reviewe
Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping
Energy barrier of oxygen molecule dissociation on carbon nanotube or graphene
with different types of nitrogen doping is investigated using density
functional theory. The results show that the energy barriers can be reduced
efficiently by all types of nitrogen doping in both carbon nanotubes and
graphene. Graphite-like nitrogen and Stone-Wales defect nitrogen decrease the
energy barrier more efficiently than pyridine-like nitrogen, and a dissociation
barrier lower than 0.2 eV can be obtained. Higher nitrogen concentration
reduces the energy barrier much more efficiently for graphite-like nitrogen.
These observations are closely related to partial occupation of {\pi}* orbitals
and change of work functions. Our results thus provide useful insights into the
oxygen reduction reactions.Comment: Accepted by Nanoscal
Solitary hepatic lymphangioma: a one-case report
Hepatic lymphangiomas, malformations of the liver lymphatic system, are extremely rare conditions in adults. A 41-year-old man presented with right upper abdominal pain for 6 months was introduced in this report. Ultrasound (US) and computed tomography (CT) scan demonstrated a giant cystictumor with a pedunculatedextrahepatic growth pattern. Due to diagnostic uncertainty, a partial hepatectomy was performed and pathological results confirmed the diagnosis of solitary hepatic lymphangioma. In this article, we reviewed the clinical and pathology features, preoperative diagnostic challenges, and treatments of hepaticlymphangiomas
Multiple-relaxation-time lattice Boltzmann model for compressible fluids
We present an energy-conserving multiple-relaxation-time finite difference
lattice Boltzmann model for compressible flows. This model is based on a
16-discrete-velocity model. The collision step is first calculated in the
moment space and then mapped back to the velocity space. The moment space and
corresponding transformation matrix are constructed according to the group
representation theory. Equilibria of the nonconserved moments are chosen
according to the need of recovering compressible Navier-Stokes equations
through the Chapman-Enskog expansion. Numerical experiments showed that
compressible flows with strong shocks can be well simulated by the present
model. The used benchmark tests include (i) shock tubes, such as the Sod, Lax,
Sjogreen, Colella explosion wave and collision of two strong shocks, (ii)
regular and Mach shock reflections, and (iii) shock wave reaction on
cylindrical bubble problems. The new model works for both low and high speeds
compressible flows. It contains more physical information and has better
numerical stability and accuracy than its single-relaxation-time version.Comment: 11 figures, Revte
Gate-tuned normal and superconducting transport at the surface of a topological insulator
Three-dimensional topological insulators are characterized by the presence of
a bandgap in their bulk and gapless Dirac fermions at their surfaces. New
physical phenomena originating from the presence of the Dirac fermions are
predicted to occur, and to be experimentally accessible via transport
measurements in suitably designed electronic devices. Here we study transport
through superconducting junctions fabricated on thin Bi2Se3 single crystals,
equipped with a gate electrode. In the presence of perpendicular magnetic field
B, sweeping the gate voltage enables us to observe the filling of the Dirac
fermion Landau levels, whose character evolves continuously from electron- to
hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned,
and is minimum at the charge neutrality point determined from the Landau level
filling. Our results demonstrate how gated nano-electronic devices give control
over normal and superconducting transport of Dirac fermions at an individual
surface of a three-dimensional topological insulator.Comment: 28 pages, 5 figure
Room geometry blind inference based on the localization of real sound source and first order reflections
The conventional room geometry blind inference techniques with acoustic
signals are conducted based on the prior knowledge of the environment, such as
the room impulse response (RIR) or the sound source position, which will limit
its application under unknown scenarios. To solve this problem, we have
proposed a room geometry reconstruction method in this paper by using the
geometric relation between the direct signal and first-order reflections. In
addition to the information of the compact microphone array itself, this method
does not need any precognition of the environmental parameters. Besides, the
learning-based DNN models are designed and used to improve the accuracy and
integrity of the localization results of the direct source and first-order
reflections. The direction of arrival (DOA) and time difference of arrival
(TDOA) information of the direct and reflected signals are firstly estimated
using the proposed DCNN and TD-CNN models, which have higher sensitivity and
accuracy than the conventional methods. Then the position of the sound source
is inferred by integrating the DOA, TDOA and array height using the proposed
DNN model. After that, the positions of image sources and corresponding
boundaries are derived based on the geometric relation. Experimental results of
both simulations and real measurements verify the effectiveness and accuracy of
the proposed techniques compared with the conventional methods under different
reverberant environments
Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors
Nucleus accumbens (NAc) is involved in behaviors that depend on heightened wakefulness, but its impact on arousal remains unclear. Here, we demonstrate that NAc dopamine D1 receptor (D1R)-expressing neurons are essential for behavioral arousal. Using in vivo fiber photometry in mice, we find arousal-dependent increases in population activity of NAc D1R neurons. Optogenetic activation of NAc D1R neurons induces immediate transitions from non-rapid eye movement sleep to wakefulness, and chemogenetic stimulation prolongs arousal, with decreased food intake. Patch-clamp, tracing, immunohistochemistry, and electron microscopy reveal that NAc D1R neurons project to the midbrain and lateral hypothalamus, and might disinhibit midbrain dopamine neurons and lateral hypothalamus orexin neurons. Photoactivation of terminals in the midbrain and lateral hypothalamus is sufficient to induce wakefulness. Silencing of NAc D1R neurons suppresses arousal, with increased nest-building behaviors. Collectively, our data indicate that NAc D1R neuron circuits are essential for the induction and maintenance of wakefulness
- …
