91 research outputs found

    Entropic Multi-Relaxation Models for Simulation of Fluid Turbulence

    Full text link
    A recently introduced family of lattice Boltzmann (LB) models (Karlin, B\"osch, Chikatamarla, Phys. Rev. E, 2014) is studied in detail for incompressible two-dimensional flows. A framework for developing LB models based on entropy considerations is laid out extensively. Second order rate of convergence is numerically confirmed and it is demonstrated that these entropy based models recover the Navier-Stokes solution in the hydrodynamic limit. Comparison with the standard Bhatnagar-Gross-Krook (LBGK) and the entropic lattice Boltzmann method (ELBM) demonstrates the superior stability and accuracy for several benchmark flows and a range of grid resolutions and Reynolds numbers. High Reynolds number regimes are investigated through the simulation of two-dimensional turbulence, particularly for under-resolved cases. Compared to resolved LBGK simulations, the presented class of LB models demonstrate excellent performance and capture the turbulence statistics with good accuracy.Comment: To be published in Proceedings of Discrete Simulation of Fluid Dynamics DSFD 201

    Fluid-Structure Interaction with the Entropic Lattice Boltzmann Method

    Full text link
    We propose a novel fluid-structure interaction (FSI) scheme using the entropic multi-relaxation time lattice Boltzmann (KBC) model for the fluid domain in combination with a nonlinear finite element solver for the structural part. We show validity of the proposed scheme for various challenging set-ups by comparison to literature data. Beyond validation, we extend the KBC model to multiphase flows and couple it with FEM solver. Robustness and viability of the entropic multi-relaxation time model for complex FSI applications is shown by simulations of droplet impact on elastic superhydrophobic surfaces

    Entropic Lattice Boltzmann Method for Moving and Deforming Geometries in Three Dimensions

    Full text link
    Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work Dorschner et al. [11] as well as for three dimensional one-way coupled simulations of engine-type geometries in Dorschner et al. [12] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases including two-way coupling between fluid and structure, turbulence and deformable meshes. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil at a Reynolds number of Re = 40000 and finally, to access the model's performance for deforming meshes, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.Comment: submitted to Journal of Computational Physic

    Drops bouncing off macro-textured superhydrophobic surfaces

    Full text link
    Recent experiments with droplets impacting a macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. We present here a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantify the role played by various external and internal forces that effect the dynamics of a drop impacting a complex surface. For the first time, three-dimensional simulations involving macro-textured surfaces are performed. Aside from demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analyzing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyze the role played by the texture density. Moreover, we report a non-linear behavior of the contact time with the increase of the Weber number for application relevant imperfectly coated textures, and also study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers

    Lattice Boltzmann method for direct numerical simulation of turbulent flows

    No full text
    We present three-dimensional numerical simulations (DNS) of the Kida vortex flow, a prototypical turbulent flow, using a novel high-order lattice Boltzmann model. Extensive comparisons of various global and local statistical quantities obtained with an incompressible flow spectral element solver are reported. It is demonstrated that the lattice Boltzmann method is a promising alternative for DNS as it quantitatively capturesall the computed statistics of fluid turbulence

    Entropic Lattice Boltzmann Simulation of the Flow Past Square Cylinder

    Full text link
    Minimal Boltzmann kinetic models, such as lattice Boltzmann, are often used as an alternative to the discretization of the Navier-Stokes equations for hydrodynamic simulations. Recently, it was argued that modeling sub-grid scale phenomena at the kinetic level might provide an efficient tool for large scale simulations. Indeed, a particular variant of this approach, known as the entropic lattice Boltzmann method (ELBM), has shown that an efficient coarse-grained simulation of decaying turbulence is possible using these approaches. The present work investigates the efficiency of the entropic lattice Boltzmann in describing flows of engineering interest. In order to do so, we have chosen the flow past a square cylinder, which is a simple model of such flows. We will show that ELBM can quantitatively capture the variation of vortex shedding frequency as a function of Reynolds number in the low as well as the high Reynolds number regime, without any need for explicit sub-grid scale modeling. This extends the previous studies for this set-up, where experimental behavior ranging from Re∼O(10)Re\sim O(10) to Re≤1000Re\leq 1000 were predicted by a single simulation algorithm.Comment: 12 pages, 5 figures, to appear in Int. J. Mod. Phys.

    Lattice Boltzmann method for direct numerical simulation of turbulent flows

    Get PDF
    We present three-dimensional direct numerical simulations (DNS) of the Kida vortex flow, a prototypical turbulent flow, using a novel high-order lattice Boltzmann (LB) model. Extensive comparisons of various global and local statistical quantities obtained with an incompressible-flow spectral element solver are reported. It is demonstrated that the LB method is a promising alternative for DNS as it quantitatively captures all the computed statistics of fluid turbulenc

    Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    Full text link
    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. This model is based on a 16-discrete-velocity model. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The used benchmark tests include (i) shock tubes, such as the Sod, Lax, Sjogreen, Colella explosion wave and collision of two strong shocks, (ii) regular and Mach shock reflections, and (iii) shock wave reaction on cylindrical bubble problems. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version.Comment: 11 figures, Revte
    • …
    corecore