Three-dimensional topological insulators are characterized by the presence of
a bandgap in their bulk and gapless Dirac fermions at their surfaces. New
physical phenomena originating from the presence of the Dirac fermions are
predicted to occur, and to be experimentally accessible via transport
measurements in suitably designed electronic devices. Here we study transport
through superconducting junctions fabricated on thin Bi2Se3 single crystals,
equipped with a gate electrode. In the presence of perpendicular magnetic field
B, sweeping the gate voltage enables us to observe the filling of the Dirac
fermion Landau levels, whose character evolves continuously from electron- to
hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned,
and is minimum at the charge neutrality point determined from the Landau level
filling. Our results demonstrate how gated nano-electronic devices give control
over normal and superconducting transport of Dirac fermions at an individual
surface of a three-dimensional topological insulator.Comment: 28 pages, 5 figure