129 research outputs found

    Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB

    Get PDF
    In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP. Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator

    Galaxy formation in the Planck cosmology - II. Star-formation histories and post-processing magnitude reconstruction

    Get PDF
    We adapt the L-Galaxies semi-analytic model to follow the star-formation histories (SFH) of galaxies -- by which we mean a record of the formation time and metallicities of the stars that are present in each galaxy at a given time. We use these to construct stellar spectra in post-processing, which offers large efficiency savings and allows user-defined spectral bands and dust models to be applied to data stored in the Millennium data repository. We contrast model SFHs from the Millennium Simulation with observed ones from the VESPA algorithm as applied to the SDSS-7 catalogue. The overall agreement is good, with both simulated and SDSS galaxies showing a steeper SFH with increased stellar mass. The SFHs of blue and red galaxies, however, show poor agreement between data and simulations, which may indicate that the termination of star formation is too abrupt in the models. The mean star-formation rate (SFR) of model galaxies is well-defined and is accurately modelled by a double power law at all redshifts: SFR proportional to 1/(x1.39+x1.33)1/(x^{-1.39}+x^{1.33}), where x=(tat)/3.0x=(t_a-t)/3.0\,Gyr, tt is the age of the stars and tat_a is the loopback time to the onset of galaxy formation; above a redshift of unity, this is well approximated by a gamma function: SFR proportional to x1.5exx^{1.5}e^{-x}, where x=(tat)/2.0x=(t_a-t)/2.0\,Gyr. Individual galaxies, however, show a wide dispersion about this mean. When split by mass, the SFR peaks earlier for high-mass galaxies than for lower-mass ones, and we interpret this downsizing as a mass-dependence in the evolution of the quenched fraction: the SFHs of star-forming galaxies show only a weak mass dependence.Comment: Accepted version of the paper, to appear in MNRAS. Compared to the original version, contains more detail on the post-processing of magnitudes, including a table of rms magnitude errors. SFHs available on Millennium database http://gavo.mpa-garching.mpg.de/MyMillennium

    Evaluating system of rice intensification using a modified transplanter: A smart farming solution toward sustainability of paddy fields in Malaysia

    Get PDF
    This paper presents the study reports on evaluating a new transplanting operation by taking into accounts the interactions between soil, plant, and machine in line with the System of Rice Intensification (SRI) practices. The objective was to modify planting claw (kuku-kambing) of a paddy transplanter in compliance with SRI guidelines to determine the best planting spacing (S), seed rate (G) and planting pattern that results in a maximum number of seedling, tillers per hill, and yield. Two separate experiments were carried out in two different paddy fields, one to determine the best planting spacing (S=4 levels: s1=0.16 m×0.3 m, s2= 0.18 m×0.3 m, s3=0.21 m×0.3 m, and s4=0.24 m×0.3 m) for a specific planting pattern (row mat or scattered planting pattern), and the other to determine the best combination of spacing with seed rate treatments (G=2 levels: g1=75 g/tray, and g2= 240 g/tray). Main SRI management practices such as soil characteristics of the sites, planting depth, missing hill, hill population, the number of seedling per hill, and yield components were evaluated. Results of two-way analysis of variance with three replications showed that spacing, planting pattern and seed rate affected the number of one-seedling in all experiment. It was also observed that the increase in spacing resulted in more tillers and more panicle per plant, however hill population and sterility ratio increased with the decrease in spacing. While the maximum number of panicles were resulted from scattered planting at s4=0.24 m×0.3 m spacing with the seed rate of g1=75 g/tray, the maximum number of one seedling were observed at s4=0.16 m×0.3 m. The highest and lowest yields were obtained from 75 g seeds per tray scattered and 70 g seeds per tray scattered treatment respectively. For all treatments, the result clearly indicates an increase in yield with an increase in spacing.DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Adaptive Management Framework for Evaluating and Adjusting Microclimate Parameters in Tropical Greenhouse Crop Production Systems

    Get PDF
    High operational costs of greenhouse production in hot and humid climate condition due to the initial investments on structure, equipment, and energy necessitate practicing advanced techniques for more efficient use of available resources. This chapter describes design and concepts of an adaptive management framework for evaluating and adjusting optimality degrees and comfort ratios of microclimate parameters, as well as predicting the expected yield in greenhouse cultivation of tomato. A systematic approach is presented for automatic data collection and processing with the objective to produce knowledge‐based information in achieving optimum microclimate for high‐quality and high‐yield tomato. Applications of relevant computer models are demonstrated through case‐study examples for use in an iterative way to simulate and compare different scenarios. The presented framework can contribute to future studies for providing best management decisions such as site selection, optimum growing season, scheduling efficiencies, energy management with different climate control systems, and risk assessments associated with each task

    Efficient Ground Surface Displacement Monitoring Using Sentinel-1 Data: Integrating Distributed Scatterers (DS) Identified Using Two-Sample t-Test with Persistent Scatterers (PS)

    Get PDF
    Combining persistent scatterers (PS) and distributed scatterers (DS) is important for effective displacement monitoring using time-series of SAR data. However, for large stacks of synthetic aperture radar (SAR) data, the DS analysis using existing algorithms becomes a time-consuming process. Moreover, the whole procedure of DS selection should be repeated as soon as a new SAR acquisition is made, which is challenging considering the short repeat-observation of missions such as Sentinel-1. SqueeSAR is an approach for extracting signals from DS, which first applies a spatiotemporal filter on images and optimizes DS, then incorporates information from both optimized DS and PS points into interferometric SAR (InSAR) time-series analysis. In this study, we followed SqueeSAR and implemented a new approach for DS analysis using two-sample t-test to efficiently identify neighboring pixels with similar behaviour. We evaluated the performance of our approach on 50 Sentinel-1 images acquired over Trondheim in Norway between January 2015 and December 2016. A cross check on the number of the identified neighboring pixels using the Kolmogorov–Smirnov (KS) test, which is employed in the SqueeSAR approach, and the t-test shows that their results are strongly correlated. However, in comparison to KS-test, the t-test is less computationally intensive (98% faster). Moreover, the results obtained by applying the tests under different SAR stack sizes from 40 to 10 show that the t-test is less sensitive to the number of image
    corecore