19 research outputs found

    Comparison of 2 models for gene–environment interactions: an example of simulated gene–medication interactions on systolic blood pressure in family-based data

    Get PDF
    Abstract Background Nearly half of adults in the United States who are diagnosed with hypertension use blood-pressure-lowering medications. Yet there is a large interindividual variability in the response to these medications. Two complementary gene–environment interaction methods have been published and incorporated into publicly available software packages to examine interaction effects, including whether genetic variants modify the association between medication use and blood pressure. The first approach uses a gene–environment interaction term to measure the change in outcome when both the genetic marker and medication are present (the “interaction model”). The second approach tests for effect-size differences between strata of an environmental exposure (the “med-diff” approach). However, no studies have quantitatively compared how these methods perform with respect to 1 or 2 degree of freedom (DF) tests or in family-based data sets. We evaluated these 2 approaches using simulated genotype–medication response interactions at 3 single nucleotide polymorphisms (SNPs) across a range of minor allele frequencies (MAFs 0.1–5.4 %) using the Genetic Analysis Workshop 19 family sample. Results The estimated interaction effect sizes were on average larger in the interaction model approach compared to the med-diff approach. The true positive proportion was higher for the med-diff approach for SNPs less than 1 % MAF, but higher for the interaction model when common variants were evaluated (MAF >5 %). The interaction model produced lower false-positive proportions than expected (5 %) across a range of MAFs for both the 1DF and 2DF tests. In contrast, the med-diff approach produced higher but stable false-positive proportions around 5 % across MAFs for both tests. Conclusions Although the 1DF tests both performed similarly for common variants, the interaction model estimated true interaction effects with less bias and higher true positive proportions than the med-diff approach. However, if rare variation (MAF <5 %) is of interest, our findings suggest that when convergence is achieved, the med-diff approach may estimate true interaction effects more conservatively and with less variability

    Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos

    Get PDF
    US Hispanic/Latino individuals are diverse in genetic ancestry, culture, and environmental exposures. Here, we characterized and controlled for this diversity in genome-wide association studies (GWASs) for the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). We simultaneously estimated population-structure principal components (PCs) robust to familial relatedness and pairwise kinship coefficients (KCs) robust to population structure, admixture, and Hardy-Weinberg departures. The PCs revealed substantial genetic differentiation within and among six self-identified background groups (Cuban, Dominican, Puerto Rican, Mexican, and Central and South American). To control for variation among groups, we developed a multi-dimensional clustering method to define a “genetic-analysis group” variable that retains many properties of self-identified background while achieving substantially greater genetic homogeneity within groups and including participants with non-specific self-identification. In GWASs of 22 biomedical traits, we used a linear mixed model (LMM) including pairwise empirical KCs to account for familial relatedness, PCs for ancestry, and genetic-analysis groups for additional group-associated effects. Including the genetic-analysis group as a covariate accounted for significant trait variation in 8 of 22 traits, even after we fit 20 PCs. Additionally, genetic-analysis groups had significant heterogeneity of residual variance for 20 of 22 traits, and modeling this heteroscedasticity within the LMM reduced genomic inflation for 19 traits. Furthermore, fitting an LMM that utilized a genetic-analysis group rather than a self-identified background group achieved higher power to detect previously reported associations. We expect that the methods applied here will be useful in other studies with multiple ethnic groups, admixture, and relatedness

    Evidence of Heterogeneity by Race/Ethnicity in Genetic Determinants of QT Interval

    Get PDF
    QT-interval (QT) prolongation is an established risk factor for ventricular tachyarrhythmia and sudden cardiac death. Previous genome-wide association studies in populations of the European descent have identified multiple genetic loci that influence QT, but few have examined these loci in ethnically diverse populations

    Fine mapping of QT interval regions in global populations refines previously identified QT interval loci and identifies signals unique to African and Hispanic descent populations

    Get PDF
    BACKGROUND: The electrocardiographically measured QT interval (QT) is heritable and its prolongation is an established risk factor for several cardiovascular diseases. Yet, most QT genetic studies have been performed in European ancestral populations, possibly reducing their global relevance. OBJECTIVE: To leverage diversity and improve biological insight, we fine mapped 16 of the 35 previously identified QT loci (46%) in populations of African American (n = 12,410) and Hispanic/Latino (n = 14,837) ancestry. METHODS: Racial/ethnic-specific multiple linear regression analyses adjusted for heart rate and clinical covariates were examined separately and in combination after inverse-variance weighted trans-ethnic meta-analysis. RESULTS: The 16 fine-mapped QT loci included on the Illumina Metabochip represented 21 independent signals, of which 16 (76%) were significantly (P-value≤9.1×10-5) associated with QT. Through sequential conditional analysis we also identified three trans-ethnic novel SNPs at ATP1B1, SCN5A-SCN10A, and KCNQ1 and three Hispanic/Latino-specific novel SNPs at NOS1AP and SCN5A-SCN10A (two novel SNPs) with evidence of associations with QT independent of previous identified GWAS lead SNPs. Linkage disequilibrium patterns helped to narrow the region likely to contain the functional variants at several loci, including NOS1AP, USP50-TRPM7, and PRKCA, although intervals surrounding SLC35F1-PLN and CNOT1 remained broad in size (>100 kb). Finally, bioinformatics-based functional characterization suggested a regulatory function in cardiac tissues for the majority of independent signals that generalized and the novel SNPs. CONCLUSION: Our findings suggest that a majority of identified SNPs implicate gene regulatory dysfunction in QT prolongation, that the same loci influence variation in QT across global populations, and that additional, novel, population-specific QT signals exist

    GWAS of the electrocardiographic QT interval in Hispanics/Latinos generalizes previously identified loci and identifies population-specific signals

    Get PDF
    QT interval prolongation is a heritable risk factor for ventricular arrhythmias and can predispose to sudden death. Most genome-wide association studies (GWAS) of QT were performed in European ancestral populations, leaving other groups uncharacterized. Herein we present the first QT GWAS of Hispanic/Latinos using data on 15,997 participants from four studies. Study-specific summary results of the association between 1000 Genomes Project (1000G) imputed SNPs and electrocardiographically measured QT were combined using fixed-effects meta-analysis. We identified 41 genome-wide significant SNPs that mapped to 13 previously identified QT loci. Conditional analyses distinguished six secondary signals at NOS1AP (n = 2), ATP1B1 (n = 2), SCN5A (n = 1), and KCNQ1 (n = 1). Comparison of linkage disequilibrium patterns between the 13 lead SNPs and six secondary signals with previously reported index SNPs in 1000G super populations suggested that the SCN5A and KCNE1 lead SNPs were potentially novel and population-specific. Finally, of the 42 suggestively associated loci, AJAP1 was suggestively associated with QT in a prior East Asian GWAS; in contrast BVES and CAP2 murine knockouts caused cardiac conduction defects. Our results indicate that whereas the same loci influence QT across populations, population-specific variation exists, motivating future trans-ethnic and ancestrally diverse QT GWAS

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe
    corecore