243 research outputs found

    The calcium-Activated potassium channel KCa3.1 is an important modulator of hepatic injury

    Get PDF
    The calcium-Activated potassium channel KCa3.1 controls different cellular processes such as proliferation and volume homeostasis. We investigated the role of KCa3.1 in experimental and human liver fibrosis. KCa3.1 gene expression was investigated in healthy and injured human and rodent liver. Effect of genetic depletion and pharmacological inhibition of KCa3.1 was evaluated in mice during carbon tetrachloride induced hepatic fibrogenesis. Transcription, protein expression and localisation of KCa3.1 was analysed by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry. Hemodynamic effects of KCa3.1 inhibition were investigated in bile duct-ligated and carbon tetrachloride intoxicated rats. In vitro experiments were performed in rat hepatic stellate cells and hepatocytes. KCa3.1 expression was increased in rodent and human liver fibrosis and was predominantly observed in the hepatocytes. Inhibition of KCa3.1 aggravated liver fibrosis during carbon tetrachloride challenge but did not change hemodynamic parameters in portal hypertensive rats. In vitro, KCa3.1 inhibition leads to increased hepatocyte apoptosis and DNA damage, whereas proliferation of hepatic stellate cells was stimulated by KCa3.1 inhibition. Our data identifies KCa3.1 channels as important modulators in hepatocellular homeostasis. In contrast to previous studies in vitro and other tissues this channel appears to be anti-fibrotic and protective during liver injury

    Cesarean or vaginal birth does not impact the longitudinal development of the gut microbiome in a cohort of exclusively preterm infants

    Get PDF
    The short and long-term impact of birth mode on the developing gut microbiome in neonates has potential implications for the health of infants. In term infants, the microbiome immediately following birth across multiple body sites corresponds to birth mode, with increased Bacteroides in vaginally delivered infants. We aimed to determine the impact of birth mode of the preterm gut microbiome over the first 100 days of life and following neonatal intensive care unit (NICU) discharge. In total, 867 stool samples from 46 preterm infants (21 cesarean and 25 vaginal), median gestational age 27 weeks, were sequenced (V4 region 16S rRNA gene, Illumina MiSeq). Of these, 776 samples passed quality filtering and were included in the analysis. The overall longitudinal alpha-diversity and within infant beta-diversity was comparable between cesarean and vaginally delivered infants. Vaginally delivered infants kept significantly more OTUs from 2 months of life and following NICU discharge, but OTUs lost, gained, and regained were not different based on birth mode. Furthermore, the temporal progression of dominant genera was comparable between birth modes and no significant difference was found for any genera following adjustment for covariates. Lastly, preterm gut community types (PGCTs) showed some moderate differences in very early life, but progressed toward a comparable pattern by week 5. No PGCT was significantly associated with cesarean or vaginal birth. Unlike term infants, birth mode was not significantly associated with changes in microbial diversity, composition, specific taxa, or overall microbial development in preterm infants. This may result from the dominating effects of NICU exposures including the universal use of antibiotics immediately following birth and/or the lack of Bacteroides colonizing preterm infants

    Investigating the potential barrier function of nanostructured materials formed in engineered barrier systems (EBS) designed for nuclear waste isolation

    Full text link
    "This is the peer reviewed version of the following article: Jaime Cuevas Ana Isabel Ruiz RaĂșl FernĂĄndez, "Investigating the Potential Barrier Function of Nanostructured Materials Formed in Engineered Barrier Systems (EBS) Designed for Nuclear Waste Isolation, The Chemical Record 18 (2018): 1065-1075 , which has been published in final form at http://doi.org/10.1002/tcr.201700094. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions."Clay and cement are known nano-colloids originating from natural processes or traditional materials technology. Currently, they are used together as part of the engineered barrier system (EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until the canisters fail, which is not expected for approximately 103 years. The interactions of cementitious materials with bentonite swelling clay have been the scope of our research team at the Autonomous University of Madrid (UAM) with participation in several European Union (EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and microstructure of the alteration rim generated by the contact between concrete and bentonite. Its ability to buffer the surrounding chemical environment may have potential for further protection against RN migratio

    Thermodynamic modelling of phase evolution in alkali-activated slag cements exposed to carbon dioxide

    Get PDF
    Carbonation of cementitious materials induced by their interaction with atmospheric CO2 is one of the main degradation mechanisms threatening their durability. In this study, a novel thermodynamic model to predict the phase evolution of alkali-activated slags exposed to an accelerated carbonation environment is presented. This model predicts the phase assemblages of carbonated alkali-activated slag cements, as a function of CO2 uptake under 1 v/v % CO2 conditions, considering the bulk slag chemistry and activators used. The changes taking place during the carbonation process regarding the physicochemical properties of the main binding gel, an alkali calcium aluminosilicate hydrate (C-(N)-A-S-H), the secondary reaction products CaAl and MgAl layered double hydroxides, and amorphous aluminosilicate gels, were simulated and discussed. The predictions of the thermodynamic model are in good agreement with experimental data retrieved from the literature, demonstrating that this is a valuable tool for predicting long-term performance of alkali-activated slag cements

    17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use

    Get PDF
    _To the Editor,_ Approximately 25% of the asthmatic children suffer from uncontrolled asthma despite regular use of inhaled corticosteroids (ICS). Variation within the 17q21 locus is the strongest genetic determinant for childhood‐onset asthma. Recently, the influence of this locus on treatment outcomes has been shown in several studies. The Pharmacogenomics in Childhood Asthma (PiCA) consortium is a multiethnic consortium that brings together data from ≄14 000 asthmatic children/young adults from 12 different countries to study the pharmacogenomics of uncontrolled asthma despite treatment. In 14 PiCA populations (with over 4000 asthmatic patients), we studied the association between variation in the 17q21 locus, and asthma exacerbations despite ICS use. We specifically focused on rs7216389, a single nucleotide polymorphism (SNP) in the 17q21 locus strongly associated with childhood asthma and initially identified by Moffatt et al. [...
    • 

    corecore