508 research outputs found
Ab initio study on the effects of transition metal doping of Mg2NiH4
Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation
kinetics. Its hydrogen desorption enthalpy, however, is too large for practical
applications. In this paper we study the effects of transition metal doping by
first-principles density functional theory calculations. We show that the
hydrogen desorption enthalpy can be reduced by ~0.1 eV/H2 if one in eight Ni
atoms is replaced by Cu or Fe. Replacing Ni by Co atoms, however, increases the
hydrogen desorption enthalpy. We study the thermodynamic stability of the
dopants in the hydrogenated and dehydrogenated phases. Doping with Co or Cu
leads to marginally stable compounds, whereas doping with Fe leads to an
unstable compound. The optical response of Mg2NiH4 is also substantially
affected by doping. The optical gap in Mg2NiH4 is ~1.7 eV. Doping with Co, Fe
or Cu leads to impurity bands that reduce the optical gap by up to 0.5 eV.Comment: 8 pages, 4 figure
Automation methodologies and large-scale validation for , towards high-throughput calculations
The search for new materials, based on computational screening, relies on
methods that accurately predict, in an automatic manner, total energy,
atomic-scale geometries, and other fundamental characteristics of materials.
Many technologically important material properties directly stem from the
electronic structure of a material, but the usual workhorse for total energies,
namely density-functional theory, is plagued by fundamental shortcomings and
errors from approximate exchange-correlation functionals in its prediction of
the electronic structure. At variance, the method is currently the
state-of-the-art {\em ab initio} approach for accurate electronic structure. It
is mostly used to perturbatively correct density-functional theory results, but
is however computationally demanding and also requires expert knowledge to give
accurate results. Accordingly, it is not presently used in high-throughput
screening: fully automatized algorithms for setting up the calculations and
determining convergence are lacking. In this work we develop such a method and,
as a first application, use it to validate the accuracy of using the
PBE starting point, and the Godby-Needs plasmon pole model
(@PBE), on a set of about 80 solids. The results of the
automatic convergence study utilized provides valuable insights. Indeed, we
find correlations between computational parameters that can be used to further
improve the automatization of calculations. Moreover, we find that
@PBE shows a correlation between the PBE and the
@PBE gaps that is much stronger than that between and
experimental gaps. However, the @PBE gaps still describe
the experimental gaps more accurately than a linear model based on the PBE
gaps.Comment: 12 pages, 11 figure
The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
First-principles calculations in crystalline structures are often performed
with a planewave basis set. To make the number of basis functions tractable two
approximations are usually introduced: core electrons are frozen and the
diverging Coulomb potential near the nucleus is replaced by a smoother
expression. The norm-conserving pseudopotential was the first successful method
to apply these approximations in a fully ab initio way. Later on, more
efficient and more exact approaches were developed based on the ultrasoft and
the projector augmented wave formalisms. These formalisms are however more
complex and developing new features in these frameworks is usually more
difficult than in the norm-conserving framework. Most of the existing tables of
norm- conserving pseudopotentials, generated long ago, do not include the
latest developments, are not systematically tested or are not designed
primarily for high accuracy. In this paper, we present our PseudoDojo framework
for developing and testing full tables of pseudopotentials, and demonstrate it
with a new table generated with the ONCVPSP approach. The PseudoDojo is an open
source project, building on the AbiPy package, for developing and
systematically testing pseudopotentials. At present it contains 7 different
batteries of tests executed with ABINIT, which are performed as a function of
the energy cutoff. The results of these tests are then used to provide hints
for the energy cutoff for actual production calculations. Our final set
contains 141 pseudopotentials split into a standard and a stringent accuracy
table. In total around 70.000 calculations were performed to test the
pseudopotentials. The process of developing the final table led to new insights
into the effects of both the core-valence partitioning and the non-linear core
corrections on the stability, convergence, and transferability of
norm-conserving pseudopotentials. ...Comment: abstract truncated, 17 pages, 25 figures, 8 table
A model for the formation energies of alanates and boranates
We develop a simple model for the formation energies (FEs) of alkali and
lkaline earth alanates and boranates, based upon ionic bonding between metal
cations and (AlH4)- or (BH4)- anions. The FEs agree well with values obtained
from first principles calculations and with experimental FEs. The model shows
that details of the crystal structure are relatively unimportant. The small
size of the (BH4)- anion causes a strong bonding in the crystal, which makes
boranates more stable than alanates. Smaller alkali or alkaline earth cations
do not give an increased FE. They involve a larger ionization potential that
compensates for the increased crystal bonding.Comment: 3 pages, 2 figure
First-principles study of the optical properties of MgxTi(1-x)H2
The optical and electronic properties of Mg-Ti hydrides are studied using
first-principles density functional theory. Dielectric functions are calculated
for MgxTi(1-x)H2 with compositions x = 0.5, 0.75, and 0.875. The structure is
that of fluorite TiH2 where both Mg and Ti atoms reside at the Ti positions of
the lattice. In order to assess the effect of randomness in the Mg and Ti
occupations we consider both highly ordered structures, modeled with simple
unit cells of minimal size, and models of random alloys. These are simulated by
super cells containing up to 64 formula units (Z = 64). All compositions and
structural models turn out metallic, hence the dielectric functions contain
interband and intraband free electron contributions. The former are calculated
in the independent particle random phase approximation. The latter are modeled
based upon the intraband plasma frequencies, which are also calculated from
first-principles. Only for the models of the random alloys we obtain a black
state, i.e. low reflection and transmission in the energy range from 1 to 6 eV.Comment: 7 pages, 8 figure
Electronic structure and optical properties of lightweight metal hydrides
We study the electronic structures and dielectric functions of the simple
hydrides LiH, NaH, MgH2 and AlH3, and the complex hydrides Li3AlH6, Na3AlH6,
LiAlH4, NaAlH4 and Mg(AlH4)2, using first principles density functional theory
and GW calculations. All these compounds are large gap insulators with GW
single particle band gaps varying from 3.5 eV in AlH3 to 6.5 eV in the MAlH4
compounds. The valence bands are dominated by the hydrogen atoms, whereas the
conduction bands have mixed contributions from the hydrogens and the metal
cations. The electronic structure of the aluminium compounds is determined
mainly by aluminium hydride complexes and their mutual interactions. Despite
considerable differences between the band structures and the band gaps of the
various compounds, their optical responses are qualitatively similar. In most
of the spectra the optical absorption rises sharply above 6 eV and has a strong
peak around 8 eV. The quantitative differences in the optical spectra are
interpreted in terms of the structure and the electronic structure of the
compounds.Comment: 13 pages, 10 figure
DFT Study of Planar Boron Sheets: A New Template for Hydrogen Storage
We study the hydrogen storage properties of planar boron sheets and compare
them to those of graphene. The binding of molecular hydrogen to the boron sheet
(0.05 eV) is stronger than that to graphene. We find that dispersion of alkali
metal (AM = Li, Na, and K) atoms onto the boron sheet markedly increases
hydrogen binding energies and storage capacities. The unique structure of the
boron sheet presents a template for creating a stable lattice of strongly
bonded metal atoms with a large nearest neighbor distance. In contrast, AM
atoms dispersed on graphene tend to cluster to form a bulk metal. In particular
the boron-Li system is found to be a good candidate for hydrogen storage
purposes. In the fully loaded case this compound can contain up to 10.7 wt. %
molecular hydrogen with an average binding energy of 0.15 eV/H2.Comment: 19 pages, 7 figures, and 3 table
Quasiparticle interfacial level alignment of highly hybridized frontier levels: HO on TiO(110)
Knowledge of the frontier levels' alignment prior to photo-irradiation is
necessary to achieve a complete quantitative description of HO
photocatalysis on TiO(110). Although HO on rutile TiO(110) has been
thoroughly studied both experimentally and theoretically, a quantitative value
for the energy of the highest HO occupied levels is still lacking. For
experiment, this is due to the HO levels being obscured by hybridization
with TiO(110) levels in the difference spectra obtained via ultraviolet
photoemission spectroscopy (UPS). For theory, this is due to inherent
difficulties in properly describing many-body effects at the
HO-TiO(110) interface. Using the projected density of states (DOS) from
state-of-the-art quasiparticle (QP) , we disentangle the adsorbate and
surface contributions to the complex UPS spectra of HO on TiO(110). We
perform this separation as a function of HO coverage and dissociation on
stoichiometric and reduced surfaces. Due to hybridization with the TiO(110)
surface, the HO 3a and 1b levels are broadened into several peaks
between 5 and 1 eV below the TiO(110) valence band maximum (VBM). These
peaks have both intermolecular and interfacial bonding and antibonding
character. We find the highest occupied levels of HO adsorbed intact and
dissociated on stoichiometric TiO(110) are 1.1 and 0.9 eV below the VBM. We
also find a similar energy of 1.1 eV for the highest occupied levels of HO
when adsorbed dissociatively on a bridging O vacancy of the reduced surface. In
both cases, these energies are significantly higher (by 0.6 to 2.6 eV) than
those estimated from UPS difference spectra, which are inconclusive in this
energy region. Finally, we apply self-consistent QP (scQP1) to obtain
the ionization potential of the HO-TiO(110) interface.Comment: 12 pages, 12 figures, 1 tabl
Ionic high-pressure form of elemental boron
Boron is an element of fascinating chemical complexity. Controversies have
shrouded this element since its discovery was announced in 1808: the new
'element' turned out to be a compound containing less than 60-70 percent of
boron, and it was not until 1909 that 99-percent pure boron was obtained. And
although we now know of at least 16 polymorphs, the stable phase of boron is
not yet experimentally established even at ambient conditions. Boron's
complexities arise from frustration: situated between metals and insulators in
the periodic table, boron has only three valence electrons, which would favour
metallicity, but they are sufficiently localized that insulating states emerge.
However, this subtle balance between metallic and insulating states is easily
shifted by pressure, temperature and impurities. Here we report the results of
high-pressure experiments and ab initio evolutionary crystal structure
predictions that explore the structural stability of boron under pressure and,
strikingly, reveal a partially ionic high-pressure boron phase. This new phase
is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has
a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell)
consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement.
We find that the ionicity of the phase affects its electronic bandgap, infrared
adsorption and dielectric constants, and that it arises from the different
electronic properties of the B2 pairs and B12 clusters and the resultant charge
transfer between them.Comment: Published in Nature 453, 863-867 (2009
Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries
IMPORTANCE: Limited information exists about the epidemiology, recognition, management, and outcomes of patients with the acute respiratory distress syndrome (ARDS).
OBJECTIVES: To evaluate intensive care unit (ICU) incidence and outcome of ARDS and to assess clinician recognition, ventilation management, and use of adjuncts-for example prone positioning-in routine clinical practice for patients fulfilling the ARDS Berlin Definition.
DESIGN, SETTING, AND PARTICIPANTS:The Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) was an international, multicenter, prospective cohort study of patients undergoing invasive or noninvasive ventilation, conducted during 4 consecutive weeks in the winter of 2014 in a convenience sample of 459 ICUs from 50 countries across 5 continents.
EXPOSURES:Acute respiratory distress syndrome.
MAIN OUTCOMES AND MEASURES: The primary outcome was ICU incidence of ARDS. Secondary outcomes included assessment of clinician recognition of ARDS, the application of ventilatory management, the use of adjunctive interventions in routine clinical practice, and clinical outcomes from ARDS.
RESULTS: Of 29,144 patients admitted to participating ICUs, 3022 (10.4%) fulfilled ARDS criteria. Of these, 2377 patients developed ARDS in the first 48 hours and whose respiratory failure was managed with invasive mechanical ventilation. The period prevalence of mild ARDS was 30.0% (95% CI, 28.2%-31.9%); of moderate ARDS, 46.6% (95% CI, 44.5%-48.6%); and of severe ARDS, 23.4% (95% CI, 21.7%-25.2%). ARDS represented 0.42 cases per ICU bed over 4 weeks and represented 10.4% (95% CI, 10.0%-10.7%) of ICU admissions and 23.4% of patients requiring mechanical ventilation. Clinical recognition of ARDS ranged from 51.3% (95% CI, 47.5%-55.0%) in mild to 78.5% (95% CI, 74.8%-81.8%) in severe ARDS. Less than two-thirds of patients with ARDS received a tidal volume 8 of mL/kg or less of predicted body weight. Plateau pressure was measured in 40.1% (95% CI, 38.2-42.1), whereas 82.6% (95% CI, 81.0%-84.1%) received a positive end-expository pressure (PEEP) of less than 12 cm H2O. Prone positioning was used in 16.3% (95% CI, 13.7%-19.2%) of patients with severe ARDS. Clinician recognition of ARDS was associated with higher PEEP, greater use of neuromuscular blockade, and prone positioning. Hospital mortality was 34.9% (95% CI, 31.4%-38.5%) for those with mild, 40.3% (95% CI, 37.4%-43.3%) for those with moderate, and 46.1% (95% CI, 41.9%-50.4%) for those with severe ARDS.
CONCLUSIONS AND RELEVANCE: Among ICUs in 50 countries, the period prevalence of ARDS was 10.4% of ICU admissions. This syndrome appeared to be underrecognized and undertreated and associated with a high mortality rate. These findings indicate the potential for improvement in the management of patients with ARDS
- …