Mg2NiH4 is a promising hydrogen storage material with fast (de)hydrogenation
kinetics. Its hydrogen desorption enthalpy, however, is too large for practical
applications. In this paper we study the effects of transition metal doping by
first-principles density functional theory calculations. We show that the
hydrogen desorption enthalpy can be reduced by ~0.1 eV/H2 if one in eight Ni
atoms is replaced by Cu or Fe. Replacing Ni by Co atoms, however, increases the
hydrogen desorption enthalpy. We study the thermodynamic stability of the
dopants in the hydrogenated and dehydrogenated phases. Doping with Co or Cu
leads to marginally stable compounds, whereas doping with Fe leads to an
unstable compound. The optical response of Mg2NiH4 is also substantially
affected by doping. The optical gap in Mg2NiH4 is ~1.7 eV. Doping with Co, Fe
or Cu leads to impurity bands that reduce the optical gap by up to 0.5 eV.Comment: 8 pages, 4 figure