36 research outputs found

    Effect of particle size on the viscosity of nanofluids:a review

    Get PDF
    Nanofluids are potential new generation heat transfer fluids, which have been investigated meticulously, in recent years. Thermophysical properties of these fluids have significant influence on their heat transfer characteristics. Viscosity is one of the most important thermophysical properties that depends on various parameters. Size of the particles used in nanofluids is one of these effecting parameters. In this work, experimental studies considering the particle size effect on the viscosity of the nanofluid have been reviewed. Firstly, comparison of nanofluid and surfactant type, production and measurement methods were considered. Viscosity results of selected studies were evaluated in view of the parameters such as particle size, temperature and concentration. Furthermore, effective viscosity models of nanofluids, which include particle size as a parameter were discussed. The results indicate that there is a discrepancy about the effect of particle size on the viscosity of nanofluids. Moreover, it is observed from the evaluated data that the relative viscosity variation can be almost 40% either upwards or downwards by only altering the particle size

    Brain Tumor Segmentation and Classification from Sensor-Based Portable Microwave Brain Imaging System Using Lightweight Deep Learning Models

    Get PDF
    Automated brain tumor segmentation from reconstructed microwave (RMW) brain images and image classification is essential for the investigation and monitoring of the progression of brain disease. The manual detection, classification, and segmentation of tumors are extremely time-consuming but crucial tasks due to the tumor's pattern. In this paper, we propose a new lightweight segmentation model called MicrowaveSegNet (MSegNet), which segments the brain tumor, and a new classifier called the BrainImageNet (BINet) model to classify the RMW images. Initially, three hundred (300) RMW brain image samples were obtained from our sensors-based microwave brain imaging (SMBI) system to create an original dataset. Then, image preprocessing and augmentation techniques were applied to make 6000 training images per fold for a 5-fold cross-validation. Later, the MSegNet and BINet were compared to state-of-the-art segmentation and classification models to verify their performance. The MSegNet has achieved an Intersection-over-Union (IoU) and Dice score of 86.92% and 93.10%, respectively, for tumor segmentation. The BINet has achieved an accuracy, precision, recall, F1-score, and specificity of 89.33%, 88.74%, 88.67%, 88.61%, and 94.33%, respectively, for three-class classification using raw RMW images, whereas it achieved 98.33%, 98.35%, 98.33%, 98.33%, and 99.17%, respectively, for segmented RMW images. Therefore, the proposed cascaded model can be used in the SMBI system.This work was supported by the Universiti Kebangsaan Malaysia (UKM), project grant code: DIP-2020-009. This work was also supported by Grant NPRP12S-0227-190164 from the Qatar National Research Fund, a member of Qatar Foundation, Doha, Qatar, and student grant from Qatar University, Grant # QUST-1-CENG-2023-796. The claims made herein are solely the responsibility of the authors. Open access publication is supported by Qatar National Library.Scopu

    Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images

    Get PDF
    Computer-aided diagnosis for the reliable and fast detection of coronavirus disease (COVID-19) has become a necessity to prevent the spread of the virus during the pandemic to ease the burden on the healthcare system. Chest X-ray (CXR) imaging has several advantages over other imaging and detection techniques. Numerous works have been reported on COVID-19 detection from a smaller set of original X-ray images. However, the effect of image enhancement and lung segmentation of a large dataset in COVID-19 detection was not reported in the literature. We have compiled a large X-ray dataset (COVQU) consisting of 18,479 CXR images with 8851 normal, 6012 non-COVID lung infections, and 3616 COVID-19 CXR images and their corresponding ground truth lung masks. To the best of our knowledge, this is the largest public COVID positive database and the lung masks. Five different image enhancement techniques: histogram equalization (HE), contrast limited adaptive histogram equalization (CLAHE), image complement, gamma correction, and balance contrast enhancement technique (BCET) were used to investigate the effect of image enhancement techniques on COVID-19 detection. A novel U-Net model was proposed and compared with the standard U-Net model for lung segmentation. Six different pre-trained Convolutional Neural Networks (CNNs) (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and ChexNet) and a shallow CNN model were investigated on the plain and segmented lung CXR images. The novel U-Net model showed an accuracy, Intersection over Union (IoU), and Dice coefficient of 98.63%, 94.3%, and 96.94%, respectively for lung segmentation. The gamma correction-based enhancement technique outperforms other techniques in detecting COVID-19 from the plain and the segmented lung CXR images. Classification performance from plain CXR images is slightly better than the segmented lung CXR images; however, the reliability of network performance is significantly improved for the segmented lung images, which was observed using the visualization technique. The accuracy, precision, sensitivity, F1-score, and specificity were 95.11%, 94.55%, 94.56%, 94.53%, and 95.59% respectively for the segmented lung images. The proposed approach with very reliable and comparable performance will boost the fast and robust COVID-19 detection using chest X-ray images.COVID19 Emergency Response Grant #QUERG-CENG-2020-1 from Qatar University, Doha, Qatar provided the support for the work and the claims made herein are solely the responsibility of the authors

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Pazar Taksi Durağı

    No full text
    Ankara : İhsan Doğramacı Bilkent Üniversitesi İktisadi, İdari ve Sosyal Bilimler Fakültesi, Tarih Bölümü, 2015.This work is a student project of the The Department of History, Faculty of Economics, Administrative and Social Sciences, İhsan Doğramacı Bilkent University.by Karabağ, Müzeyyen
    corecore