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A B S T R A C T   

Computer-aided diagnosis for the reliable and fast detection of coronavirus disease (COVID-19) has become a 
necessity to prevent the spread of the virus during the pandemic to ease the burden on the healthcare system. 
Chest X-ray (CXR) imaging has several advantages over other imaging and detection techniques. Numerous 
works have been reported on COVID-19 detection from a smaller set of original X-ray images. However, the effect 
of image enhancement and lung segmentation of a large dataset in COVID-19 detection was not reported in the 
literature. We have compiled a large X-ray dataset (COVQU) consisting of 18,479 CXR images with 8851 normal, 
6012 non-COVID lung infections, and 3616 COVID-19 CXR images and their corresponding ground truth lung 
masks. To the best of our knowledge, this is the largest public COVID positive database and the lung masks. Five 
different image enhancement techniques: histogram equalization (HE), contrast limited adaptive histogram 
equalization (CLAHE), image complement, gamma correction, and balance contrast enhancement technique 
(BCET) were used to investigate the effect of image enhancement techniques on COVID-19 detection. A novel U- 
Net model was proposed and compared with the standard U-Net model for lung segmentation. Six different pre- 
trained Convolutional Neural Networks (CNNs) (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, 
and ChexNet) and a shallow CNN model were investigated on the plain and segmented lung CXR images. The 
novel U-Net model showed an accuracy, Intersection over Union (IoU), and Dice coefficient of 98.63%, 94.3%, 
and 96.94%, respectively for lung segmentation. The gamma correction-based enhancement technique out-
performs other techniques in detecting COVID-19 from the plain and the segmented lung CXR images. Classi-
fication performance from plain CXR images is slightly better than the segmented lung CXR images; however, the 
reliability of network performance is significantly improved for the segmented lung images, which was observed 
using the visualization technique. The accuracy, precision, sensitivity, F1-score, and specificity were 95.11%, 
94.55%, 94.56%, 94.53%, and 95.59% respectively for the segmented lung images. The proposed approach with 
very reliable and comparable performance will boost the fast and robust COVID-19 detection using chest X-ray 
images.   

1. Introduction 

Coronavirus Disease 2019 (COVID-19) pandemic with an 

exponential infection rate has overloaded worldwide healthcare systems 
[1]. There are more than twenty-one million active cases and more than 
two and half a million deaths in the world, as of March 2021 [2]. 
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COVID-19 diagnosis is typically carried out by Reverse Transcription 
Polymerase Chain Reaction (RT-PCR), which suffers from low accuracy, 
delay, and low sensitivity [1,3,4]. Early diagnosis of disease increases 
the chances for successful treatment of infected patients and also re-
duces the chances of spreading in the community for a contagious dis-
ease like COVID-19. Wearable medical sensors and efficient artificial 
neural networks are used to classify COVID-19 patients based on phys-
iological and questionnaire inputs [5]. Besides, different machine 
learning-based prediction models were implemented to predict the 
infection rate and probability of second and thirds waves of pandemic 
and risk of spreading associated to travel. Radiography images such as 
chest X-ray (CXR) or computed tomography (CT) are a routine technique 
for diagnosing lung-related diseases such as pneumonia [6], tuberculosis 
[7], and can be useful in COVID-19 detection as well [8,9]. One of the 
advantages of CXR is the ability to perform them easily using portable 
X-ray machines providing faster, and accurate COVID-19 diagnosis [8, 
10–13]. CXRs are found to be potential for detecting COVID-19 with the 
help of artificial intelligence (AI) and are also less harmful to the human 
body compared to CT [8,10–12]. 

Recently, a large number of works have been carried out to detect 
COVID-19 using X-ray images with the help of different AI-based tech-
niques. Different transfer learning techniques, novel network architec-
tures, and ensemble solutions were proposed to improve the network 
performances to classify COVID-19, normal, and other lung diseases. 
Apostolopoulos et al. [6] reported 96.78% accuracy for COVID-19 
detection from bacterial pneumonia and normal X-rays in a dataset of 
1427 X-rays. Similarly, Abbas et al. [7] reported accuracy of 95.12% for 
COVID-19 classification from COVID-19, normal, and Severe Acute 
Respiratory Syndrome (SARS) CXR images using a pre-trained CNN 
model (DeTraC Decompose, Transfer and Compose) with a small data-
base of 196 X-ray images. Minaee et al. [8] reported specificity and 
sensitivity of 90% and 97%, respectively using the ChexPert dataset [9]. 
Even though the results are promising, the dataset used for training 
machine learning (ML) models is small; however, it shows that deep ML 
models can be used for the COVID-19 detection. Khan et al. [10] 
explored a limited number of machine learning algorithms for a 
four-class classification problem (COVID-19, bacterial pneumonia, viral 
pneumonia, and normal) with a very small dataset. Goldstein et al. [11] 
built a classifier to detect COVID-19 using a pre-trained deep learning 
model (ResNet50) and enhanced by data augmentation and lung seg-
mentation with the help of 2362 CXR images collected from four hos-
pitals and achieved accuracy and sensitivity of 89.7% and 87.1%, 
respectively. Chowdhury et al. [12] proposed an ensemble of deep 
convolutional neural network (CNN) models named Efficient Convolu-
tional Network (ECOVNet) to classify COVID-19, normal, and pneu-
monia using 16,493 CXR images using the transfer learning method and 
achieved an accuracy of 97%. Ashfar et al. [13] reported an accuracy of 
95.7% using a Capsule Networks, called COVID-CAPS rather than a 
conventional CNN to deal with a smaller dataset. Yamac et al. [14] 
introduced a compact CNN architecture, Convolution Support Estima-
tion Network (CSEN) that utilizes CheXNet as a feature extractor to 
classify the target CXR images as COVID-19, bacterial pneumonia, viral 
pneumonia, or normal. The network produced 98% COVID-19 detection 
sensitivity using a dataset of 462 COVID-19 CXR images. The same 
group of researchers has proposed a reliable warning system to diagnose 
early-stage COVID-19 cases using a compact CSEN network. Ahishali 
et al. [15] showed that CheXNet and CSEN have achieved a COVID-19 
detection sensitivity of 97.1% and 98.5%, respectively on a smaller 
dataset. Wang and Wong [16] used around 14k CXR images but reported 
an accuracy of 83.5% using a deep CNN, called COVID-Net. Further-
more, Motamed et al. [17] proposed a randomized generative adversa-
rial network (RANDGAN) that detects images of an unknown class 
(COVID-19) from known and labeled classes (normal and viral pneu-
monia) without the need for labels and training data from the unknown 
class of images (COVID-19) using 14,100 CXR images and attained an 
area under the curve (AUC) of 0.77. It was observed that combining 

different techniques can help to achieve better performance in 
COVID-19 detection. Angelica et al. [18] introduced a graph-based deep 
semi-supervised framework for classifying COVID-19 from CXR images 
using around 15,254 images and achieved an accuracy of 96.4%. Degerli 
et al. in Ref. [19] proposed a novel method for the joint localization, 
severity grading, and detection of COVID-19 from 15,495 CXR images 
by generating the so-called infection maps that can accurately localize 
and grade the severity of COVID-19 infection with 98.69% accuracy. 
Ahmed et al. in Ref. [20] proposed a novel CNN architecture, ReCoNet 
(residual image-based COVID-19 detection network) for COVID-19 
detection using preprocessing steps, which was reported to be very 
useful for enhancing unique COVID-19 signature. The proposed modular 
architecture trained on 15,134 CXR images and achieved an accuracy, 
sensitivity, and specificity of 97.48%, 96.39%, and 97.53%, respec-
tively. The machine learning model consists of a CNN-based multi-level 
preprocessing filter block in cascade with a multi-layer CNN-based 
feature extractor and a classification block. In the recent articles, 
transfer learning was very common approach to tackle such a problem 
and it showed very promising results. 

The importance and the scientific motivations of the work are pre-
sented in this paragraph. There is a demand for medical image 
enhancement to help clinicians to make an accurate diagnosis of the 
diseases [6,8,12,32]. The image enhancement process consists of a 
collection of techniques that are used to improve the visual appearance 
of an image such as removing blur and noise of the image, which in turn 
increase the contrast and provides more details of an image. With the 
large number of X-ray images acquired every day in the hospitals for 
COVID-19 patients, the quality of the acquired images can vary due to 
several reasons: the condition of the patients, the breathing state of the 
patient, and human error. For front view X-ray, Posterior – Anterior (PA) 
and Anterior-posterior (AP) are the most common methods for chest 
X-ray images. Some differences between the procedure of both methods 
will reflect on the output image. The AP approach gives a less clear view 
of the heart and mediastinum because the patient is not instructed to 
take a few deep breaths and hold them for a couple of seconds. Thus, the 
output image is less clear compared to the PA approach. Besides, an AP 
image can also be taken with the patient sitting or at a supine state on 
the bed, which can affect the image quality. Secondly, many images are 
converted from DICOM (Digital Imaging and Communications in Med-
icine) to other image formats such as PNG (Portable Network Graphics) 
and JPG/JPEG (Joint Photographic Experts Group). This conversation 
can lead to lower-quality images. It is required to improve the overall 
quality of the image, which improves the spatial features of the image. 
The main purpose of image enhancement is to improve the interpret-
ability or perception of information contained in the image for human 
viewers or feature extraction and creates an image that is subjectively 
better than the original image by changing the pixel intensity of the 
input image. A major concern is not to alter the information during the 
image enhancement process. Various image enhancement techniques 
such as de-noising algorithms, filtering, interpolation, wavelets, etc. 
[34–36] are applied for this purpose. Many functions are available to 
enhance the geometric features such as edges, corners, and ridges of the 
medical images. These techniques and approaches can enhance the 
classification performance of the machine learning models for medical 
images. Several local image enhancement algorithms have been intro-
duced in the last two decades to improve the image quality to boost 
machine learning models’ performance [37,38]. Arun et al. [39] pro-
posed the adaptive histogram equalization technique, which can help in 
image enhancement; however, this made the image appears fuzzy. This 
approach was further improved by Hasikin et al. [40], where they pro-
posed the use of fuzzy set theory. It not only produces better quality 
images but also requires minimum processing time. Selvi et al. [41] 
proposed a method for enhancing the fingerprint images. A four-step 
image enhancement technique, i.e. preprocessing, fuzzy-based 
filtering, adaptive thresholding, and morphological operation, was uti-
lized for producing noise-free fingerprint images. This technique 
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produced better peak signal-to-noise (PSNR) values than many previous 
techniques. Mohammad et al. [42] presented Bi-and Multi-histogram 
methods to enhance the contrast while preserving the brightness and 
natural appearance of the images. This technique has been useful in 
many applications that require image enhancement [43]. Several other 
popular histogram techniques can be explored for CXR images to 
investigate whether they can help ML models in various image classifi-
cation techniques or not [8,24,44–51]. In our previous study [8], we 
have discussed four different pre-processing schemes that were tested 
for detecting COVID-19 from other coronavirus family diseases (SARS 
and Middle East Respiratory Syndrome (MERS)) using CXR images. It 
was observed that the 3-channel approach (a combination of original, 
Contrast Limited Adaptive Histogram Equalization (CLAHE) and image 
complement) outperforms other enhancement techniques and achieves 
sensitivities of 99.5%, 93.1%, and 97% for classifying COVID-19, MERS, 
and SARS images. Yujin et al. [49] used Histogram Equalization (HE) 
and gamma correction enhancement techniques for detecting COVID-19 
from CXR images. They proposed a patch-based CNN approach with a 
relatively small number of trainable parameters for COVID-19 diagnosis 
and it showed 92.5% sensitivity for COVID-19. Heidari et al. [28] pro-
posed a pre-trained VGG-19 network using histogram equalization and a 
new three-channel approach using 8474 CXR images consisting of 
COVID-19, community-acquired pneumonia, and normal cases. The 
three-channel approach used the two sets of filtered images from the 
enhanced CXR and the original images, which achieved 94.5% accuracy 
in classifying COVID-19 images. It can be summarized that the 
above-stated studies along with many others are relying on a limited 
dataset for developing and validating machine learning models. 

Since the reported articles used a dataset containing a very small 
number of COVID-19 CXR images, it makes them difficult to generalize 
their findings, and cannot guarantee to reproduce the results when these 
models are evaluated on a larger dataset. Therefore, the investigation of 
different CXR image enhancement techniques investigated on a large 
dataset comprising normal (healthy class), non-COVID (other lung in-
fections), and COVID-19 infected patients’ CXR images will be very 
useful. The contributions of this paper can be explicitly stated below:  

• To the best of the authors’ knowledge, this is the first work where the 
effects of various CXR image enhancement techniques were exten-
sively studied on plain and segmented CXR image classification.  

• This is the largest CXR and lung segmented image dataset comprising 
COVID-19, normal (healthy), and non-COVID (different lung in-
fections) CXR images were gathered and used for classification. 

• A modified version of the U-Net model is proposed in this manu-
script, which outperforms the standard U-Net architecture for the 
lung segmentation of CXR images.  

• The outcome of this study was verified by image visualization 
technique to confirm the findings of the deep networks.  

• The use of CXR image enhancement techniques, transfer learning, 
and segmentation of lung resulted in benchmark results of COVID-19 
detection outperforming the state-of-the-art methods. 

The remaining part of this paper is divided into the following sec-
tions: Section 2 provides the details of the various pre-trained classifi-
cation models, lung segmentation models, different image 
enhancement, and visualization techniques. Section 3 describes the 
methodology followed in this study, and the results of the classification 
performance using the original and segmented CXR images enhanced 
using different techniques along with the visualization heat map in 
Section 4. The paper is then concluded in Section 5. 

2. Background 

2.1. Deep Convolutional Neural Networks 

Deep CNNs have been popularly used in image classification due to 

their superior performance compared to other machine learning para-
digm. The networks automatically extract the spatial and temporal 
features of an image. The approach of transfer learning has been suc-
cessfully incorporated in many applications. [21–23], especially where a 
large dataset can be hard to find. Thus, it opens the opportunity of uti-
lizing smaller datasets and also reduces the time required to develop a 
deep learning algorithm from scratch [24,25]. For COVID-19 detection, 
nine pre-trained deep learning CNNs such as ResNet18, ResNet50, 
ResNet101 [26], DenseNet201 [27], ChexNet [28], and InceptionV3 
[29] were predominantly used in the literature. ChexNet is the only 
network that is trained on CXR images, unlike the other networks that 
are initially trained on the ImageNet database. Residual Network (in 
short ResNet) with several variants, solve vanishing gradient and 
degradation problem [26] and learn from residuals instead of features 
[30]. Dense Convolutional Network (in brief DenseNet) needs a smaller 
number of parameters than a conventional CNN, as it does not learn 
redundant feature maps. The DenseNet has layers with direct access to 
the original input image and loss function gradients. Another variant of 
DenseNet, ChexNet is trained and validated using a large number of CXR 
images [28]. Inception-v3 is a CNN architecture from the inception 
family that makes several improvements including using label smooth-
ing, factorized 7 × 7 convolutions, and the use of an auxiliary classifier 
to propagate label information lower down the network (along with the 
use of batch normalization for layers in the side head). This network 
scales in ways that strive to use the added computation as effectively as 
possible through correctly factorized convolutions and aggressive reg-
ularization [29]. 

2.2. Image enhancement techniques 

Image enhancement is an important image-processing technique, 
which highlights key information in an image and reduces or removes 
certain secondary information to improve the identification quality in 
the process. The aim is to make the objective images more suitable for a 
specific application than the original images. We employ five different 
enhancement techniques in this research. In the following section, these 
image enhancement techniques will be briefly introduced: 

2.2.1. Histogram equalization (HE) 
The histogram equalization (HE) technique aims to distribute the 

gray levels within an image. Each gray level is therefore has equal 
chances to occur. HE changes the brightness and contrast of the dark and 
low contrast images to enhance image quality [31]. The histogram 
would be skewed towards the lower end of the grayscale for a dark 
image, and the image information would be squeezed into the dark end 
of the histogram. In order to create a more evenly distributed histogram, 
the gray levels can be re-distributed at the dark end, which can make the 
image clear. The histogram of a digital image with intensity levels in the 
range [0, L-1] is a discrete function represented as follows: 

h(rk)= nk (1)  

Where, rk is kth intensity value, nk is the number of pixels in the image 
with intensity, rk. Histograms are frequently normalized by the total 
number of pixels in the image. Assuming an M x N image, a normalized 
histogram is related to the probability of occurrence of rk in the image as 
shown in equation (2). 

p(rk)=
nk

M*N
(2)  

2.2.2. Contrast limited adaptive histogram equalization (CLAHE) 
An improved HE variant is called Adaptive Histogram Equalization 

(AHE). AHE performs histogram equalization over small regions (i.e., 
patches) in the image, and thus, AHE enhances the contrast of each re-
gion individually. Therefore, it improves local contrast and edges 
adaptively in each region of the image to the local distribution of pixel 
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intensities instead of the global information of the image. However, AHE 
could over amplify the noise component in the image [32]. However, 
images enhanced with CLAHE are more natural in appearance than 
those produced by HE. When the HE technique was applied to the X-ray 
images, it was observed that it saturated certain regions. To address this 
issue, CLAHE uses the same approach as AHE but the amount of contrast 
enhancement that can be produced within the selected region is limited 
by a threshold parameter. Firstly, the original image is converted from 
RGB (red, green, and blue) color space to HSV (hue, saturation, and 
value) color space as a human sense color similar to the HSV version. 
Secondly, the value component of HSV is processed by CLAHE without 
affecting the hue and saturation. The initial histogram is cropped and 
each gray-level is redistributed to the cropped pixels. The value of each 
pixel is reduced to a user-selectable limit. Finally, the HSV processed 
image is re-transformed to RGB color space. 

2.2.3. Image invert/complement 
The image inversion or complement is a technique where the zeros 

become ones and ones become zeros so black and white are reversed in a 
binary image. For an 8-bit grayscale image, the original pixel is sub-
tracted from the highest intensity value (255), the difference is consid-
ered as pixel values for the new image. For X-ray images, the dark spots 
turn lighter and light spots become darker. The mathematical expression 
is simply as follows: 

y= 255 − x (3)  

Where, x and y are the intensity values of the original and the trans-
formed (new) images. This technique shows the lungs area (i.e., the 
region of interest) lighter and the bones are darker. As this is a standard 
procedure, which was used widely by radiologists, it may equally help 
deep networks for a better classification. It can be noted that the his-
togram for the complemented image is a flipped copy of the original 
image. 

2.2.4. Gamma correction 
Typically, linear operations are performed on individual pixels in 

image normalization, such as scalar multiplication, addition, and sub-
traction. Gamma correction performs a non-linear operation on source 
image pixels. Gamma correction alternates the pixel value to improve 
the image using the projection relationship between the value of the 
pixel and the value of the gamma according to the internal map. If P 
represents the pixel value inside the range [0,255], Ω represents the 
angle value, Ґ is the symbol of the gamma value set, x is the grayscale 
value of the pixel (x ε P). Let xm be range midpoint [0, 255]. The linear 
map from group P to group Ω is defined as: 

ϕ : P → Ω,Ω={ω|ω=ϕ(x)},ϕ(x)=
πx
2xm

(4) 

The mapping from Ω to Ґ is defined as: 

h : Ω → Ґ, Ґ ={γ|γ = h(x)} (5)  

{
h(x) = 1 + f 1(x)
f 1(x) = acos(ϕ(x)) (6)  

where a ε [0, 1] denotes a weighted factor. 
Based on this map, group P can be related to Ґ group pixel values. The 

arbitrary pixel value is calculated in relation to a given Gamma number. 
Let γ (x) = h(x), and the Gamma correction function is as follows 

g(x)= 255
( x

255

)1/γ(x)
(7)  

where g(x) represents the output pixel correction value in grayscale. 

2.2.5. Balance contrast enhancement technique (BCET) 
BCET represents an approach for improving balance contrast by 

stretching or compressing the contrast of the image without altering the 
histogram pattern of the image data. The solution is based on the 
parabolic function acquired from the image data. The general parabolic 
functional form using y coordinate and x coordinate in an XY plane is 
defined as 

y= a(x − b)2
+ c (8) 

The three coefficients a, b and c are determined from the following 
equations using the minimum, the maximum, and the mean of the input 
and output image values. 

b=
h2
(E − L) − s(H − L) + l2

(H − E)
2[h(E − L) − e(H − L) + l(H − E)]

(9)  

a=
H − L

(h − l)(h + l − 2b)
(10)  

c=L − a(l − b)2 (11)  

Where ’l’ represents the minimum value of the input image, ’h’ denotes 
the maximum value of the input image, ’e’ denotes the mean value of the 
input image, ’L’ the minimum value of the output image, ’H’ denotes the 
maximum value of the output image and ’E’ denotes the mean value of 
the output image. Fig. 1 shows the difference between the different 
image enhancement techniques. 

2.3. Visualization techniques 

The emergence of visualization tools has led to growing interest in 
how CNN works and the logic behind the making of particular decisions 
by a network. In order to view the decision-making process of CNNs, 
visualization methods lead to better visual representation. These also 
improve the transparency of the model by visualizing the reasoning 
behind the inference that can be interpreted in a way that can be easily 
understood by humans, thereby increasing trust in the results of the 
CNNs. There are many popular visualization techniques such as 
SmoothGrad [33], Grad-CAM [34], Grad-CAM++ [35], Score-CAM 
[26]. But in this study, Score-CAM was used due to its promising per-
formance [36]. Fig. 2 provides a sample Score-CAM visualization, where 
it highlights the regions used by CNN in making decisions. This visual-
ization helps in increasing the confidence of the reliability of the deep 
layer networks, by confirming the decision making from the relevant 
region of the images. 

3. Methodology 

The block diagram of the methodology adopted in the study is shown 
in Fig. 3. The study used two different CXR image databases: 1) lung 
segmentation and 2) classification databases. The major experiments 
that are carried out in this study: 1) Two U-Net models (original and 
modified U-Net model, which is proposed by the authors) to segment 
lungs from the CXR images, 2) Evaluation of original and five different 
enhanced plain CXR images for classification using seven different pre- 
trained deep-learning networks, and 3) Evaluation of segmented lungs 
CXR images (original and five different enhanced) for classification 
using pre-mentioned networks. Along with the calculation of different 
performance matrics to evaluate the network performance, the elapsed 
time per image for the best performing network in each image 
enhancement technique for plain and segmented lung X-ray images were 
calculated. The reliability of the last two experiments was verified using 
the Score-CAM visualization technique. 

The details of the study, i.e. dataset details, pre-processing and 
augmentation techniques adopted in this study, performance matrices 
utilized in the study, are discussed below. 
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Fig. 1. Histogram for original X-ray image and the images undergo different enhancement techniques.  

Fig. 2. Score-CAM visualization of A) COVID-19 CXR, B) Normal CXR, C) Non-COVID Lung Opacity CXR, to show the location of CNN model’s learning.  
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3.1. Datasets description 

In this study, the authors have used a large dataset compiled by the 
team and referred to the COVQU dataset, which is comprised of 18,479 
CXR images across 15,000 patient cases. 

3.1.1. Datasets -lung segmentation 
To investigate lung segmentation models, the authors have created 

ground truth lung masks for 18,479 CXR images, which are verified by 
expert radiologists as a part of a separate study (which is not reported in 
this study). Sample CXR images and masks are shown in Fig. 4. The 
original and the modified U-Net networks were trained and tested with 
CXR images and their respective ground truth masks. 

3.1.2. Datasets -image classification 
The dataset used to train and evaluate the proposed study is 

comprised of 18,479 CXR images across 15,000 patient cases. This 
COVQU dataset is the largest public COVID-19 positive dataset, ac-
cording to the best of the authors’ knowledge. To generate this dataset, 
the authors have used and modified different open-access databases for 
three different types (COVID-19, normal (healthy), and non-COVID lung 
infections) CXR images. COVQU dataset combined the Radiological 
Society of North America (RSNA) CXR dataset [37] and COVID-19 
dataset, details below. 

3.1.3. RSNA CXR dataset 
RSNA pneumonia detection challenge dataset [37], consists of about 

Fig. 3. Block diagram of the system methodology.  

Fig. 4. Samples of CXR images and their ground truth masks of the dataset.  
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26,684 CXR DICOM images, where 8851 images are normal, 11,821 
images are with different lung abnormalities and 6012 are non-COVID 
ground grass lung opacity X-ray images. In this study, we have used 
8851 normal (healthy) and 6012 non-COVID (lung infection) X-ray 
images. The CXR’s in the dataset were reviewed by trained radiologists 
and the condition was confirmed through clinical history, vital signs, 
and laboratory exams. The dataset comprises several other health con-
ditions in the lungs such as fluid overload (pulmonary edema), bleeding, 
volume loss (atelectasis or collapse), lung cancer, or post-radiation or 
surgical changes of lungs. The CXR images were correlated with clinical 
symptoms and history in classifying them to healthy control (normal) 
(without any underlying medical condition) and non-COVID lung in-
fections. Sample X-ray images used in the study are shown in Fig. 5. 

3.1.4. COVID-19 dataset 
COVID-19 dataset is comprised of 3616 positive COVID-19 CXR 

images, which are collected from different publicly available datasets, 
online sources, and published articles. Out of 3616 X-ray images, 2473 
images are collected from the BIMCV-COVID19+ dataset [38], 183 
images from a German medical school [39], 559 X-ray images are from 
the Italian Society of Medical Radiology (SIRM), GitHub, Kaggle & 
Twitter [40–43], and 400 X-ray images from another COVID-19 CXR 
repository [44]. BIMCV-COVID19+ dataset is the single largest public 
dataset with 2473 CXR images of COVID-19 patients acquired from 
digital X-ray (DX) and computerized X-ray (CX) machines. The major 
difference between non-COVID and COVID categories is the lung opacity 
in the CXR images due to other lung-related diseases and COVID-19, 
respectively. 

3.2. Preprocessing and data augmentation 

The datasets were preprocessed to resize the X-Ray images to fit the 
input image-size requirements of different CNN models such as 256 ×

256 pixels for the U-Net models, 299 × 299 pixels for InceptionV3, and 
224 × 224 pixels for all other networks. Using the mean and standard 
deviation of the images, Z-score normalization was carried out. 

3.2.1. Data augmentation 
It is reported that data augmentation can improve the classification 

accuracy of the deep learning algorithms by augmenting the existing 
data rather than collecting new data [45]. Data augmentation can 
significantly increase the diversity of data available for the training 
models. Image augmentation is crucial when the dataset is imbalanced. 
In this study, the number of normal images was 8,851, which is more 
than twice the size of COVID-19 CXR images. Therefore, it was impor-
tant to augment COVID-19 CXR images two-times to make the database 
balance. Some of the deep learning frameworks have built-in data 
augmentation facility within the algorithms, however, in this study, an 
image rotation based augmentation technique was utilized to generate 
training images of COVID-19 before applying to the CNN models for 
training. 

3.3. Details of the experiments 

As explained earlier in the methodology section, three major sets of 
experiments (Lung Segmentation, Classification without and with 
segmented lung CXR images) were carried out in this study. In these 
experiments, five-fold cross-validation was used, where 80% of the total 
images were used for training and 20% for testing. Out of the training 
dataset, a subset of 20% was utilized for validation to avoid overfitting 
[46]. Table 1 shows the details of the number of training, validation, and 
test CXR images used in the two experiments of plain and segmented 
lung X-ray images using five different image enhancement techniques. 
Finally, the weighted average of the five folds was calculated. 

As mentioned earlier, different experiments conducted in this study 
were carried out using PyTorch library with Python 3.7 on Intel® Xeon® 

Fig. 5. CXR image samples from different datasets: (A) COVID-19, (B) non-COVID Lung Opacity, (C) and Normal (healthy).  
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CPU E5-2697 v4 @ 2.30 GHz and 64 GB RAM, with a 16 GB NVIDIA 
GeForce GTX 1080 GPU. In the following section, each of them will be 
discussed separately: 

3.3.1. Experiments on lung segmentation 
Recently, U-Net architecture has gained increasing popularity in 

different biomedical image segmentation applications [6, 62]. U-Net is 
one of the most important semantic segmentation frameworks for a 
convolutional neural network (CNN), which is widely used in the 
medical image analysis domain for lesion segmentation, anatomical 
segmentation, and classification. The advantage of this network frame-
work is that it can accurately segment the desired feature target and 
effectively process and objectively evaluate medical images [63]. In this 
study, we have investigated the original U-Net architecture and pro-
posed a modified version of the U-Net model (Fig. 6). 

The original U-Net model consists of a contracting path with 4 
encoding blocks, followed by an expanding path with 4 decoding blocks. 
Each encoding block consists of two consecutive 3 × 3 convolutional 
layers followed by a max-pooling layer with a stride of 2 for down-
sampling. The decoding blocks consist of a transposed convolutional 
layer for upsampling, a concatenation with the corresponding feature 
map from the contracting path, and two 3 × 3 convolutional layers. 
While the decoding block has a variation in the modified U-Net archi-
tecture, where three convolutional layers are used instead of two. The 
modified decoder starts with an upsampling layer, followed by two 3 × 3 
convolutional layers, a concatenation layer, and a 3 × 3 convolutional 
layer. All convolutional layers are followed by Batch normalization and 

ReLU activation. At the final layer, 1 × 1 convolution is utilized to map 
the output from the last decoding block to 2 channel feature maps, 
where a pixel-wise SoftMax is applied to map each pixel into a binary 
class of background or lung. 

A standard U-Net and the proposed modified U-Net models were 
trained and validated to create lung segmentation using five-fold cross- 
validation. Out of 18,479 CXR images and ground truth lung masks, 80% 
of images and the corresponding masks were used for training and 20% 
images for testing. The training was done using a batch size of 4, the 
learning rate of 0.001 for a maximum of 20 epochs using Adam opti-
mizer. The learning rate was decreased if no improvement was observed 
for consecutive 3 epochs and stopped if there was no improvement for 
consecutive 6 epochs. 

3.3.2. Experiments on COVID-19 classification using plain and segmented 
lung CXRs 

In two different classification experiments (classification using plain 
and segmented lung CXRs), five-fold cross-validation was used with 80% 
of 18,479 CXR images, and segmented lungs were used for training and 
20% for testing. To avoid the overfitting issue, 20% of the training set 
was used for validation. Seven different CNN models were compared 
separately using non-segmented (plain) and segmented (lung) X-ray 
images using five different image enhancement techniques (HE, CLAHE, 
Complement, Gamma Correction, and BCET) for the classification of 
COVID-19, non-COVID lung opacity, and normal images to investigate 
the effect of image enhancement and lung segmentation on COVID-19 
detection. The training was done using a batch size of 32 CXR images, 

Table 1 
Details of the dataset used for training, validation, and testing.  

Database Types Count. of CXR’s/class Training Dataset 

Training image/fold Augmented train image/fold Validation image/fold Test image/fold 

COVID-19 dataset COVID-19 3616 2314 4628 578 724 
RSNA CXR dataset Normal 8851 5664 5664 1416 1771 

Non-COVID 6012 3847 3847 962 1203  

Fig. 6. Modified U-Net model architecture proposed for lung segmentation.  
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a learning rate of 0.001, for a maximum of 20 epochs using Adam 
optimizer. As mentioned earlier, the learning rate was decreased with no 
improvement for consecutive 3 epochs and stopped with no improve-
ment for consecutive 6 epochs. 

Five deep pre-trained networks (Inceptionv3, ResNet50, ResNet101, 
ChexNet, and DenseNet201) and one comparatively shallow pre-trained 
network (ResNet18) and a shallow CNN were evaluated. Six pre-trained 
networks were trained from their ImageNet initial weights and a shallow 
CNN model was trained from scratch to see the comparative perfor-
mance of transfer learning and learning from scratch. An eleven-layer 
CNN architecture was trained from scratch where the input to the 
cov1 layer is a 224 × 224 RGB image of a fixed size. The image is passed 
through a stack of convolutional (Conv.) layers where the filters have 
been used with a very limited receptive field: 3 to 3 (which is the 
smallest size to capture the left/right, up/down, center concept). It also 
utilizes 1 to 1 convolution filters in one of the setups, which can be seen 
as a linear transformation of the input channels (followed by non- 
linearity). The convolution stride is 1 pixel fixed; convolution’s spatial 
padding. The layer input is such that after convolution, the spatial res-
olution is retained, i.e. the padding for 3-3 convolution is 1-pixel. All the 
convolution layers are not followed by max-pooling. Five max-pooling 
layers, which follow some of the convolution layers, perform spatial 
pooling. Max-pooling, with stride 2, is performed over a 2 to 2-pixel 
window. A stack of convolutional layers (which has a different depth 
in different architectures) follows three Fully-Connected (FC) layers: the 
first two have 4096 neurons each, the third performs 3-class classifica-
tion and thus includes 3 neurons (one for each class). The soft-max layer 
is the final layer as shown in Supplementary Table 1. 

3.4. Performance evaluation matrix 

3.4.1. Evaluation matrix - lung segmentation 
The performance of different networks in image segmentation for the 

testing dataset was evaluated after the completion of the training and 
validation phase and was compared using three performance metrics: 
accuracy, Intersection-Over-Union (IoU), and Dice. The equations used 
to calculate accuracy, IoU or Jaccard Index, and Dice coefficient (or F1- 
score) are shown in equation 13–15. 

Accuracy (A)=
(TP + TN)

(TP + FN) + (FP + TN)
(12)  

IoU(Jaccard index)=
(TP)

(TP + FN + FP)
(13)  

Dice Coefficient (F1 − score)=
(2*TP)

(2*TP + FN + FP)
(14)  

3.4.2. Evaluation matrix - COVID classification 
The different CNNs’ performance in classification was evaluated 

using six performance metrics: overall accuracy, weighted sensitivity or 
recall, weighted specificity, weighted precision, and weighted F1 score 
using Eqs. (16–20). Since different classes had a different number of 
images, per class weighted performance metrics and overall accuracy 
were used to compare the networks. The performance was also evalu-
ated using the area under the curve (AUC): 

Accuracy (A)=
(TP + TN)

(TP + FN) + (FP + TN)
(15)  

Sensitivity (R)=
(TP)

(TP + FN)
(16)  

Specificity (S)=
(TN)

(FP + TN)
(17)  

Precision (P)=
(TP)

(TP + FP)
(18)  

F1 Score (F)=
(2*TP)

(2*TP + FN + FP)
(19)  

Here, true positive (TP), true negative (TN), false positive (FP), and 
false-negative (FN) were used to denote the number of COVID-19 CXR 
images were identified as COVID-19, the number of normal and non- 
COVID lung opacity CXRs were identified as normal and non-COVID 
CXRs, the number of normal and non-COVID CXRs incorrectly identi-
fied as COVID-19 CXRs and the number of COVID-19 CXRs incorrectly 
identified as normal and non-COVID, respectively. 

In addition to the metrics stated above, the various classification 
networks were also compared in terms of the elapsed time per image, i.e. 
time taken by each network to classify an input image, represented in 
Eq. (20). 

δt= t2 − t1 (20)  

Where t1 is the starting time for a network to classify an image, I and t2 is 
the end time when the network has classified the same image, I. 

4. Results and discussions 

This section describes the performance of the lung segmentation 
models and classification networks’ performance on the plain X-ray 
images and segmented lung X-ray images. 

4.1. Lung segmentation 

Table 2 shows the overall accuracy and weighted IoU and Dice of the 
test-folds for the U-Net and modified U-Net model for lung 
segmentation. 

The modified U-Net model was used to segment the classification 
database (8851 normal, 6012 lung opacity, and 3616 COVID images), 
which was used for the classification of COVID, non-COVID lung opac-
ity, and normal cases. It is important to see on a completely unseen 
image-set with a lung infection (COVID and non-COVID) and normal 
healthy images how well the trained segmentation model works. It can 
be seen from Fig. 7 that the modified U-Net model trained on the 
segmented CXR dataset can segment the lung areas of the X-ray images 
of the classification database very reliably. A qualitative evaluation was 
done to confirm that each X-ray image was segmented correctly. 

4.2. COVID-19 classification 

As mentioned earlier, there are two different experiments (on plain 
and segmented lungs X-ray images) were conducted for the classification 
of COVID-19, non-COVID lung opacity and normal. The comparative 
performance of the best performing model for different enhancement 
techniques for classification between the three different classes of plain 
images is shown in Table 3. Table 4 shows the comparative performance 
of the different CNN models in classifying COVID-19 using original and 
Gamma corrected X-ray images. It can be noted that the shallow CNN 
model was not performing better for original and enhanced images. The 
pre-trained models after re-training on CXR images can perform better 
than a shallow CNN model trained from scratch on CXR images. More-
over, it was observed that deep networks perform better than shallow 

Table 2 
Performance of segmentation networks.  

Network Accuracy (A) IoU Dice 

U-Net 98.21 93.04 96.3 
Modified U-Net (Proposed) 98.63 94.3 96.94  
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networks. 
The best performing network has been reported for the different 

enhancement techniques in Table 3. It is evident that the Gamma 
correction image enhancement technique was the best performing 
technique not only for classification performance but also in terms of the 
time required to process a single image as shown in Table 3. It was 
further verified in Table 4 that the Gamma correction technique has 
consistently improved the performance for different networks over the 
original X-ray images. Finally, it was seen that ChexNet was the best 
performing networking on gamma-corrected CXR images for COVID-19 
detection. The CheXNet showed an accuracy, precision, recall, F1-score, 
and specificity of 96.29%, 96.28%, 96.29%, 96.28%, and 96.27%, 
respectively. The superior performance of CheXNet in comparison to 

DenseNet201 is exhibiting that the deeper layer does not always perform 
better, rather CheXNet is the only DenseNet variant that was initially 
trained on chest X-ray images. Therefore, the CNN model initially 
trained on X-ray images can perform better on another CXR image 
problem. Similar performance was observed by the authors in their other 
COVID-19 detection experiments [47]. However, ResNet18, 50, and 101 
showed increasingly better performance for the classification of images 
without segmentation. Fig. 8(A) shows that the ROC curves for the best 
performing networks for the different image enhancement techniques. It 
is evident that the gamma correction is helping the network in 
discriminating different image classes better. The comparative perfor-
mance of the different image enhancement techniques for the different 
CNN models is shown in Table 5. Table 6 shows the comparative 

Fig. 7. CXR sample images (left), generated masks by the network (middle) and resulting segmented lung (right).  

Table 3 
Comparison of the best network for the COVID-19 classification using CXR images for different enhancement techniques.  

Different Enhancement Model Overall Weighted  

A P R F S δt (s)

Original InceptionV3 93.46 93.49 93.47 93.47 95.48 0.98 
Complement DenseNet201 94.19 94.21 94.19 94.19 95.78 0.72 
Histeq ChexNet 94.34 94.17 94.14 94.14 95.98 0.62 
CLAHE DenseNet201 94.08 94.09 94.08 94.07 95.77 0.75 
Gamma ChexNet 96.29 96.28 96.29 96.28 97.27 0.6 
BCET DenseNet201 94.5 94.5 94.5 94.49 96.25 0.8  
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performance of the different CNN models for the classification of the 
three-class problem using original and Gamma corrected lung 
segmented X-ray images. 

Table 5 shows that the Gamma correction technique was the best 
performing image enhancement technique for the segmented lung X-ray 
images. Fig. 8(B) shows the ROC curves for the different image 
enhancement techniques for the best performing network, where the 
image enhancement techniques had consistently improved the perfor-
mance for different networks in comparison to the original X-ray images. 
It can also be seen that the Gamma correction technique is the best 
performing technique with a comparable elapsed time per image (δt) as 
shown in Fig. 9. Finally, it was observed that DenseNet201 was the best 
performing network for the segmented lung CXR images in COVID-19 
detection using gamma-corrected lungs. The network achieves accu-
racy, precision, recall, F1-score, and specificity of 95.11%, 94.55%, 
94.56%, 94.53%, and 95.59%, respectively. 

4.3. Visualization using score-Cam 

As mentioned earlier, it is important to see where the network is 
learning from the CXR images. It can be learning from relevant and non- 
relevant areas of the CXR images for classification, which can be verified 
using Score-CAM-based heat maps generated for original (non- 
segmented) and segmented CXR images. 

It is evident from the heat map of both the original and segmented 
lungs using the Score-CAM technique is that the decision-making by the 
CNN models in original CXR is not always coming from the lung areas 
(Fig. 10). The areas of CXR images that are mostly contributing to CNN’s 
decisions are not always the lungs when the plain X-ray images are used 
for classification. It can be noted from Tables 4 and 6 that there is no 
performance improvement observed by the use of segmented lungs for 
this classification problem rather a small reduction in performance was 
observed. However, it evident from Fig. 10 that the plain X-ray images 

Table 4 
Comparison of different models for Covid-19 classification using original and 
Gamma corrected CXR images.  

Technique Model Overall Weighted 

A P R F S 

Original Resnet18 93.43 93.43 93.43 93.42 95.49 
Resnet50 93.01 93.12 93.02 93.04 95.5 
Resnet101 93.01 93.04 93.01 93 95.11 
ChexNet 93.21 93.28 93.21 93.2 95.54 
DenseNet201 92.7 92.78 92.7 92.72 95.35 
InceptionV3 93.46 93.49 93.47 93.47 95.48 
CNN 91.3 91.28 91.2 91.28 91.4 

Gamma 
correction 

Resnet18 94.63 94.64 94.62 94.6 95.92 
Resnet50 94.56 94.58 94.56 94.53 95.81 
Resnet101 94.93 94.94 94.93 94.92 96.2 
ChexNet 96.29 96.28 96.29 96.28 97.27 
DenseNet201 95.05 95.06 95.05 95.05 96.55 
InceptionV3 94.95 94.95 94.95 94.93 96.24 
CNN 92.2 92.18 92.2 92.18 92.34  

Fig. 8. ROC curves for the best performing network in each image enhancement technique for plain CXR images (A) and segmented lung CXR images (B).  

Table 5 
Comparison of the best networks for the COVID-19 classification using lung segmented CXR images for different image enhancement techniques.  

Enhancement techniques Model Overall Weighted  

A P R F S δt  

Original ChexNet 93.22 93.22 93.22 93.22 95.51 0.65 
Complement InceptionV3 93.46 93.49 93.47 93.47 95.48 1.2 
Histeq DenseNet201 93.44 93.43 93.44 93.42 95.55 0.78 
CLAHE ChexNet 93.9 93.91 93.9 93.89 95.77 0.7 
Gamma DenseNet201 95.11 94.55 94.56 94.53 95.59 0.72 
BCET DenseNet201 94.12 94.17 94.14 94.14 95.98 0.85  

Table 6 
Comparison of different models for COVID-19 classification using original and 
Gamma Corrected lung segmented CXR images.  

Technique Model Overall Weighted 

A P R F S 

Original Resnet18 92.23 92.23 92.22 92.21 94.66 
Resnet50 92.51 92.5 92.51 92.5 95.38 
Resnet101 93.14 93.14 93.15 93.12 95.41 
ChexNet 93.22 93.22 93.22 93.22 95.51 
DenseNet201 92.79 92.87 92.79 92.77 94.62 
InceptionV3 92.43 92.44 92.43 92.4 94.81 
CNN 87.02 87.18 87.02 87.06 92.94 

Gamma Resnet18 93.31 93.3 93.31 93.3 95.82 
Resnet50 93.24 93.24 93.24 93.22 95.23 
Resnet101 93.13 92.92 92.94 92.92 95.25 
ChexNet 93.63 93.67 93.63 93.59 95.34 
DenseNet201 95.11 94.55 94.56 94.53 95.59 
InceptionV3 93.92 93.92 93.92 93.9 95.7 
CNN 88.79 89.36 88.79 88.7 91.12  
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can produce a non-reliable performance of the CNN models, which is not 
desirable for such critical bio-medical application. On the other hand, a 
reliable classification of the diseases using chest X-ray images can be 
achieved using segmented CXR images, which is more useful for 
computer-aided diagnosis. 

It was reported in the recent literature that the deep learning models 
can learn from the irrelevant areas and can take a decision from the 
irrelevant information [48–51] and therefore even though high per-
forming network’s performance cannot be generalized in real-world 
applications. Therefore, the segmented lungs helped the CNN to 
decide on the main region of interest compared to the plain X-rays. In 
other words, the reliability of how the network is taking decisions for 
classification is important to increase the confidence of the end-user in 
the AI performance. As decisions for lung diseases should be done using 
the lung region in the CXR images. However, due to the limited avail-
ability of ground-truth lung masks in recent works, the results are re-
ported on plain X-rays, which can partially or completely fail in a 
real-world application. This work has become possible by the authors 
due to the benchmark lung masks created by the authors with the help of 
a pool of radiologists. The benchmark COVQU dataset and corre-
sponding lung masks will be made publicly available as a part of another 
scientific data article. 

It is also interesting to see how the Gamma enhancement technique is 
outperforming other enhancement techniques for a sample case where 

almost all the techniques have misclassified COVID-19 X-rays to either 
normal or non-COVID lung opacity but the Gamma correction based 
image enhancement technique has correctly classified the image. It can 
also be seen from Fig. 11 that the Gamma correction technique on the 
segmented lungs is taking decisions from the region of interest, i.e. 
lungs, to correctly classify the image. In summary, it can be said that the 
performance reported in the recent literature in COVID-19 and other 
lung infection detection is comparable to the performance reported in 
this study (Table 7). However, three important aspects are reported in 
this study that is missing in other recent works. Firstly, in most of the 
works, a small number of COVID-19 CXR images were used for training 
and testing the CNN models. Secondly, a detailed comprehensive 
investigation of the image enhancement techniques on COVID-19 
detection was not reported in the literature, and finally, no article has 
reported results on such large CXR images and corresponding ground 
truth lung masks to investigate the effect of reliable lung segmentation 
on COVID-19 detection. Therefore, the results reported in this study are 
not only comparable to the state-of-the-art results but also reliable and 
generalizable as it trained and validated on a large dataset. 

5. Conclusion 

The immediate and accurate detection of highly infectious COVID-19 
plays a vital role in preventing the spread of the virus. In this study, we 

Fig. 9. Comparison of F1 Score versus the elapsed time per image for the best performing network in each image enhancement technique for plain X-ray images (A) 
and segmented lung X-ray images (B). 

Fig. 10. Score-CAM visualization of correctly classified COVID-19 X-ray images using the different enhancement techniques: CXR (top row), Score-CAM heat map on 
original CXR (middle row), and segmented lungs CXR (bottom row). 
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have used CXR images since X-ray imaging is cheaper, easily accessible, 
and faster than the conventional methods commonly used, such as RT- 
PCR and CT. As an important contribution, the largest CXR dataset, 
COVQU, which consists of 3616 COVID-19, 6012 non-COVID lung 
opacity, and 8851 normal X-ray images, has been compiled and will be 
shared publicly as the benchmark dataset. Moreover, for the first time in 
the literature, we explored the effect of different image enhancement 
techniques in the automatic detection of COVID-19 from the CXR images 
using deep Convolutional Neural Networks. Furthermore, we proposed a 
novel variant of U-Net architecture for the lung segmentation from the 
X-ray images, which have outperformed the state-of-the-art U-Net 
model. This work explores the effect of different image enhancement 
techniques in the automatic detection of COVID-19 from the CXR images 
using deep Convolutional Neural Networks. In this study, six different 
deep learning pre-trained CNN models were trained on imageNet 
weights and a shallow CNN model was trained from scratch. The per-
formance of seven CNN models for five different image enhancement 
techniques was evaluated for the classification of COVID-19, non-COVID 
lung infection, and normal CXR images. Our extensive experiments on 
image enhancement techniques show that a reliable COVID-19 diagnosis 
can be achieved with the accuracy, precision, and recall of 96.29%, 
96.28%, and 96.28% without segmentation and 95.11%, 94.55%, and 
94.56% with segmentation, respectively. ChexNet model with gamma 
enhancement technique provided the best performance without image 
segmentation whereas DenseNet201 with gamma enhancement tech-
nique outperforms for the segmented lungs. The detection accuracy of 
COVID-19 was found to be comparable to the state-of-the-art results 
reported in the recent literature even though the reported articles used a 
limited number of COVID-19 images. The Score-CAM visualization 
technique confirms the reliability of the trained models as the decision 

was made from the lung regions in the segmented CXR images. Thus, the 
results reaffirm the importance of accurate segmentation of lungs from 
the CXR images, which can assist machine learning models in diagnostic 
decisions. Considering the performance improvement observed using 
the proposed modified U-Net architecture over the standard U-Net 
model, the authors are planning to utilize different variants of U-Net 
(with residual connections, UNet+ [56], dense connections, UNet ++

[57]) along with the different encoder techniques that can help in 
improving the performance even further. This deep AI-based system can 
be useful as a fast screening tool that can save lives or prevent casualties, 
especially during the pandemic period when casualties can happen due 
to delay or miss-diagnosis. 
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Fig. 11. Gamma Enhancement on segmented lungs correctly classifies COVID-19 x-ray while others miss classifying the sample X-ray images.  

Table 7 
Comparison with the current state-of-art/relevant studies.  

Articles Techniques Dataset Performance 

Tsung et al. 
[52] 

CNN (ResNet50) 15478 chest X-ray 
images (473 COVID) 

accuracy, sensitivity, and specifcity obtained is 93%, 90.1%, and 89.6% 

Abbas et al. 
[7] 

CNN (DeTraC) 1768 chest X-ray 
images (949 COVID) 

Accuracy-93.1% 

Jain et al. [53] CNN (Inception V3, Xception, and ResNet) 6432 chest X-ray 
images (490 COVID) 

Accuracy-96% and Recall-92% 

Ohata et al. 
[54] 

Transfer learning + machine learning method 
(DenseNet201 + MLP) 

388 chest X-ray images 
(194 COVID) 

Acc: 95.641%, F1-score: 95.633%, FPR: 4.103% 

Ioannis et al. 
[6] 

CNN 1427 chest X-ray 
images (224 COVID) 

accuracy, sensitivity, and specifcity obtained is 96%, 96.66%, and 96.46% 

Zulfaezal et al. 
[55] 

CNN (ResNet101) 5982 chest X-ray 
images (1765 COVID) 

sensitivity, specificity, and accuracy of 77.3%, 71.8%, and 71.9%, 
respectively 

Proposed 
study 

Seven different deep CNN networks for classification 
and modified Unet network for segmentation 

18479 chest x-ray 
images (3616 COVID) 

accuracy of 96.29%, the sensitivity of 97.28%, and the F1-score of 96.28%. 
In segmentation, Accuracy of 98.63%, and Dice score of 96.94%  
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Supplementary data to this article can be found online at https://doi. 
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