24 research outputs found

    Navigating the Precarious Path: Understanding the Dualisation of the Italian Labour Market through the Lens of Involuntary Part-Time Employment

    Full text link
    This paper investigates the surge in Involuntary Part-Time (IPT) employment in Italy from 2004 to 2019, exploring its impact on various socio-economic groups and adopting a spatial perspective. Our study tests the hypothesis that technological shifts, specifically routine biased technological change (RBTC), and the expansion of household substitution services contribute to IPT growth. We uncover a widening negative gap in IPT prevalence among marginalized groups- women, young, and less skilled workers. After controlling for sector and occupation, the higher IPT propensity diminishes but remains significant, hinting at persistent discrimination. Additionally, segregation into more exposed occupations and sectors intensifies over time. Leveraging province-level indicators, and using a Partial Adjustment model, we find support for RBTC’s correlation with IPT, especially among women. The impact of household substitution services is notably pronounced for women, highlighting sector segregation and gender norms’ influence

    Gas–Solid Heterogeneous Postsynthetic Modification of Imine-Based Covalent Organic Frameworks

    Full text link
    This is the peer-reviewed version of the following article: Martín-Illian, J. A., Royuela, S., Ramos, M. M., Segura, J. L., & Zamora, F. (2020). Gas‐Solid Heterogeneous Post‐Synthetic Modification of Imine‐based Covalent Organic Frameworks. Chemistry–A European Journal. 26 (29), 6495-6498, which has been published in final form at https://doi.org/10.1002/chem.202000224. This article may be used for non-commercial purposes in accordance with Wiley-VCH Terms and Conditions for Self-ArchivingThe copper-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction is among the most extensively used strategies for the post-polymerization modification of COFs. This work shows a new procedure for the postsynthetic functionalization of imine-based COFs by using a heterogeneous solid–gas reaction between alkyne-functionalized COFs and azides in the absence of a copper catalyst. This new alternative represents a step forward towards a greener postsynthetic modification of COFs opening a high potential for the development of new applicationsThis work was financially supported by MINECO (MAT2016‐77608‐C3‐1‐P and 2‐P

    Catalytically Active Imine-based Covalent Organic Frameworks for Detoxification of Nerve Agent Simulants in Aqueous Media

    Get PDF
    A series of imine-based covalent organic frameworks decorated in their cavities with di erent alkynyl, pyrrolidine, and N-methylpyrrolidine functional groups have been synthetized. These materials exhibit catalytic activity in aqueous media for the hydrolytic detoxification of nerve agents, as exemplified with nerve gas simulant diisopropylfluorophosphate (DIFP). These preliminary results suggest imine-based covalent organic frameworks (COFs) as promising materials for detoxification of highly toxic molecules.MINECO (MAT2016-77608-C3-1-P and 2-P, CTQ2017-84692-R) and EU FEDER fundin

    Uracil grafted imine-based covalent organic framework for nucleobase recognition

    Full text link
    An imine-based covalent organic framework (COF) decorated in its cavities with uracil groups has shown selective recognition towards adenine in water. These results show how the confinement of the base-pair inside the COF's pores allows a remarkable selective recognition in aqueous mediaThis work was financially supported by MINECO (MAT2016-77608-C3-1-P and 2-P, SAF2017-87305-R). IMDEA Nanociencia acknowledges support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686). Funding from the European Research Council (ERC-StG 279548) and MINECO (CTQ2014-27729-P and CTQ2017-84727-P) is gratefully acknowledged (DGR

    3D printing of covalent organic frameworks: a microfluidic-based system to manufacture binder-free macroscopic monoliths

    Full text link
    Covalent organic frameworks (COFs) have witnessed outstanding developments in the past 15 years, particularly in optimizing their pore structures, linkages, and variety of monomers used in their synthesis. Yet, a significant challenge remains unaddressed: the processability of COFs into macroscopic architectures with arbitrary shapes, as they are typically obtained as unprocessable powders. This study presents a novel strategy to address this issue by developing a 3D printable ink comprising a colloidal water suspension of COF nanoparticles. A microfluidic device is engineered that provides precise control over the gelation process of the COF-based ink, allowing for a layer-by-layer fabrication. As a result, the direct production of large-scale binder-free COF architectures from digital designs is achieved at room temperature and atmospheric pressure while eliminating the use of toxic organic solventsThis work had been supported by the Spanish MINECO (PID2019- 106268GB-C32, PID2022-138908NB-C31, TED2021-129886B-C42, PDC2022-133498-I00, and PID2020-116612RB-C33). The authors acknowledge the service from the MiNa Laboratory at IMN and funding from CM (project S2018/NMT-4291 TEC2SPACE), MINECO (project CSIC13-4E-1794) and EU (FEDER, FSE). F.Z. acknowledges financial support from the Spanish Ministry of Science and Innovation, through the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018- 000805-M). S.P., J.P.-L., and F. Z. also acknowledge support from the European Innovation Council under grant Agreement 101047081 (EVA). The authors acknowledge the support from the “(MAD2D-CM)-UAM” project funded by Comunidad de Madrid, by the Recovery, Transformation and Resilience Plan, and by NextGenerationEU from the European Unio

    Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst

    Full text link
    A novel naphthalene diimide-based covalent organic framework (NDI-COF) has been synthesized and successfully exfoliated into COF nanosheets (CONs). Electrochemical measurements reveal that the naphthalene diimide units incorporated into NDI-CONs act as efficient electrocatalyst for oxygen reduction in alkaline media, showing its potential for the development of metal-free fuel cellsFinancial support from the Spanish Government (projects MAT2016-77608-C3-1-P, MAT2016-77608-C3-2-P, CTQ2017-84309-C2-1-R, MAT2017-85089-C2-1-R, FJCI-2017-33536 and RYC-2015-17730), the UCM (INV.GR.00.1819.10759) and the Madrid Regional Government (TRANSNANOAVANSENS-CM (S2018/NMT-4349)) is acknowledge

    Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis

    Get PDF
    Background: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified. Results: In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out mutant seedlings show that the molecular programme that the plant deploys after the treatment with the herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate. Conclusions: These results points to an unknown GCN2-dependent factor involved in the cascade of events triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of enzyme inhibition.p This work was mainly supported by the Universidad Politecnica de Valencia (PAID2011-16) and the Ministerio Espanol de Ciencia y Tecnologia (BFU2011-22526). The work was partially supported through a grant from the Ministerio Espanol de Ciencia y Tecnologia (AGL-2010-18621).Faus, I.; Zabalza Ostos, AM.; Santiago, J.; GonzĂĄlez Nebauer, S.; Royuela, M.; Serrano, R.; Gadea, J. (2015). Protein kinase GCN2 mediates responses to glyphosate in Arabidopsis. BMC Plant Biology. 15(14). https://doi.org/10.1186/s12870-014-0378-0S1514Basu, C., Halfhill, M. D., Mueller, T. C., & Stewart, C. N. (2004). Weed genomics: new tools to understand weed biology. Trends in Plant Science, 9(8), 391-398. doi:10.1016/j.tplants.2004.06.003DĂ©lye, C. (2012). Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Management Science, 69(2), 176-187. doi:10.1002/ps.3318Powles, S. B., & Yu, Q. (2010). Evolution in Action: Plants Resistant to Herbicides. Annual Review of Plant Biology, 61(1), 317-347. doi:10.1146/annurev-arplant-042809-112119Ge, X., d’ Avignon, D. A., Ackerman, J. J. H., Collavo, A., Sattin, M., Ostrander, E. L., 
 Preston, C. (2012). Vacuolar Glyphosate-Sequestration Correlates with Glyphosate Resistance in Ryegrass (Lolium spp.) from Australia, South America, and Europe: A31P NMR Investigation. Journal of Agricultural and Food Chemistry, 60(5), 1243-1250. doi:10.1021/jf203472sDuke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest Management Science, 64(4), 319-325. doi:10.1002/ps.1518De MarĂ­a, N., Becerril, J. M., GarcĂ­a-Plazaola, J. I., HernĂĄndez, A., de Felipe, M. R., & FernĂĄndez-Pascual, M. (2006). New Insights on Glyphosate Mode of Action in Nodular Metabolism:  Role of Shikimate Accumulation. Journal of Agricultural and Food Chemistry, 54(7), 2621-2628. doi:10.1021/jf058166cZulet, A., Gil-Monreal, M., Villamor, J. G., Zabalza, A., van der Hoorn, R. A. L., & Royuela, M. (2013). Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis. PLoS ONE, 8(9), e73847. doi:10.1371/journal.pone.0073847Ahsan, N., Lee, D.-G., Lee, K.-W., Alam, I., Lee, S.-H., Bahk, J. D., & Lee, B.-H. (2008). Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiology and Biochemistry, 46(12), 1062-1070. doi:10.1016/j.plaphy.2008.07.002Lu, W., Li, L., Chen, M., Zhou, Z., Zhang, W., Ping, S., 
 Lin, M. (2013). Genome-wide transcriptional responses of Escherichia coli to glyphosate, a potent inhibitor of the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Mol. BioSyst., 9(3), 522-530. doi:10.1039/c2mb25374gServaites, J. C., Tucci, M. A., & Geiger, D. R. (1987). Glyphosate Effects on Carbon Assimilation, Ribulose Bisphosphate Carboxylase Activity, and Metabolite Levels in Sugar Beet Leaves. Plant Physiology, 85(2), 370-374. doi:10.1104/pp.85.2.370Zhu, J., Patzoldt, W. L., Shealy, R. T., Vodkin, L. O., Clough, S. J., & Tranel, P. J. (2008). Transcriptome Response to Glyphosate in Sensitive and Resistant Soybean. Journal of Agricultural and Food Chemistry, 56(15), 6355-6363. doi:10.1021/jf801254eMarc, J., Mulner-Lorillon, O., & BellĂ©, R. (2004). Glyphosate-based pesticides affect cell cycle regulation. Biology of the Cell, 96(3), 245-249. doi:10.1016/j.biolcel.2003.11.010Wek, R. C., Jiang, H.-Y., & Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions, 34(1), 7-11. doi:10.1042/bst0340007Hinnebusch, A. G. (2005). TRANSLATIONAL REGULATION OFGCN4AND THE GENERAL AMINO ACID CONTROL OF YEAST. Annual Review of Microbiology, 59(1), 407-450. doi:10.1146/annurev.micro.59.031805.133833Zhang, Y., Dickinson, J. R., Paul, M. J., & Halford, N. G. (2003). Molecular cloning of an arabidopsis homologue of GCN2, a protein kinase involved in co-ordinated response to amino acid starvation. Planta, 217(4), 668-675. doi:10.1007/s00425-003-1025-4Zhang, Y., Wang, Y., Kanyuka, K., Parry, M. A. J., Powers, S. J., & Halford, N. G. (2008). GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2α in Arabidopsis. Journal of Experimental Botany, 59(11), 3131-3141. doi:10.1093/jxb/ern169Lageix, S., Lanet, E., Pouch-PĂ©lissier, M.-N., Espagnol, M.-C., Robaglia, C., Deragon, J.-M., & PĂ©lissier, T. (2008). Arabidopsis eIF2α kinase GCN2 is essential for growth in stress conditions and is activated by wounding. BMC Plant Biology, 8(1), 134. doi:10.1186/1471-2229-8-134Shaikhin, S. M., Smailov, S. K., Lee, A. V., Kozhanov, E. V., & Iskakov, B. K. (1992). Interaction of wheat germ translation initiation factor 2 with GDP and GTP. Biochimie, 74(5), 447-454. doi:10.1016/0300-9084(92)90085-sKrishna, V. M., Janaki, N., & Ramaiah, K. V. A. (1997). Wheat Germ Initiation Factor 2 (WG·eIF2) Decreases the Inhibition in Protein Synthesis and eIF2B Activity of Reticulocyte Lysates Mediated by eIF2α Phosphorylation. Archives of Biochemistry and Biophysics, 346(1), 28-36. doi:10.1006/abbi.1997.0263Immanuel, T. M., Greenwood, D. R., & MacDiarmid, R. M. (2012). A critical review of translation initiation factor eIF2α kinases in plants - regulating protein synthesis during stress. Functional Plant Biology, 39(9), 717. doi:10.1071/fp12116Byrne, E. H., Prosser, I., Muttucumaru, N., Curtis, T. Y., Wingler, A., Powers, S., & Halford, N. G. (2011). Overexpression of GCN2-type protein kinase in wheat has profound effects on free amino acid concentration and gene expression. Plant Biotechnology Journal, 10(3), 328-340. doi:10.1111/j.1467-7652.2011.00665.xDas, M., Reichman, J. R., Haberer, G., Welzl, G., Aceituno, F. F., Mader, M. T., 
 Olszyk, D. M. (2009). A composite transcriptional signature differentiates responses towards closely related herbicides in Arabidopsis thaliana and Brassica napus. Plant Molecular Biology, 72(4-5), 545-556. doi:10.1007/s11103-009-9590-yYuan, J. S., Tranel, P. J., & Stewart, C. N. (2007). Non-target-site herbicide resistance: a family business. Trends in Plant Science, 12(1), 6-13. doi:10.1016/j.tplants.2006.11.001Peng, Y., Abercrombie, L. L., Yuan, J. S., Riggins, C. W., Sammons, R. D., Tranel, P. J., & Stewart, C. N. (2010). Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Management Science, 66(10), 1053-1062. doi:10.1002/ps.2004Baena-GonzĂĄlez, E. (2010). Energy Signaling in the Regulation of Gene Expression during Stress. Molecular Plant, 3(2), 300-313. doi:10.1093/mp/ssp113Vivancos, P. D., Driscoll, S. P., Bulman, C. A., Ying, L., Emami, K., Treumann, A., 
 Foyer, C. H. (2011). Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration. Plant Physiology, 157(1), 256-268. doi:10.1104/pp.111.181024Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major Component of Pattern-Triggered Immunity. The Plant Cell, 24(1), 275-287. doi:10.1105/tpc.111.093039Denis, M.-H., & Delrot, S. (1993). Carrier-mediated uptake of glyphosate in broad bean (Vicia faba) via a phosphate transporter. Physiologia Plantarum, 87(4), 569-575. doi:10.1111/j.1399-3054.1993.tb02508.xHetherington, P. R., Marshall, G., Kirkwood, R. C., & Warner, J. M. (1998). Absorption and efflux of glyphosate by cell suspensions. Journal of Experimental Botany, 49(320), 527-533. doi:10.1093/jxb/49.320.527Goossens, A., Dever, T. E., Pascual-Ahuir, A., & Serrano, R. (2001). The Protein Kinase Gcn2p Mediates Sodium Toxicity in Yeast. Journal of Biological Chemistry, 276(33), 30753-30760. doi:10.1074/jbc.m102960200Muaddi, H., Majumder, M., Peidis, P., Papadakis, A. I., Holcik, M., Scheuner, D., 
 Koromilas, A. E. (2010). Phosphorylation of eIF2α at Serine 51 Is an Important Determinant of Cell Survival and Adaptation to Glucose Deficiency. Molecular Biology of the Cell, 21(18), 3220-3231. doi:10.1091/mbc.e10-01-0023Geiger, D. R., Kapitan, S. W., & Tucci, M. A. (1986). Glyphosate Inhibits Photosynthesis and Allocation of Carbon to Starch in Sugar Beet Leaves. Plant Physiology, 82(2), 468-472. doi:10.1104/pp.82.2.468Cummins, I., Wortley, D. J., Sabbadin, F., He, Z., Coxon, C. R., Straker, H. E., 
 Edwards, R. (2013). Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proceedings of the National Academy of Sciences, 110(15), 5812-5817. doi:10.1073/pnas.1221179110Orcaray, L., Igal, M., Marino, D., Zabalza, A., & Royuela, M. (2010). The possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors. Pest Management Science, 66(3), 262-269. doi:10.1002/ps.1868Orcaray, L., Zulet, A., Zabalza, A., & Royuela, M. (2012). Impairment of carbon metabolism induced by the herbicide glyphosate. Journal of Plant Physiology, 169(1), 27-33. doi:10.1016/j.jplph.2011.08.009Li, M.-W., AuYeung, W.-K., & Lam, H.-M. (2012). The GCN2 homologue inArabidopsis thalianainteracts with uncharged tRNA and uses Arabidopsis eIF2α molecules as direct substrates. Plant Biology, 15(1), 13-18. doi:10.1111/j.1438-8677.2012.00606.xGe, X., d’ Avignon, D. A., Ackerman, J. J. H., & Sammons, R. D. (2014). In Vivo 31P-Nuclear Magnetic Resonance Studies of Glyphosate Uptake, Vacuolar Sequestration, and Tonoplast Pump Activity in Glyphosate-Resistant Horseweed. PLANT PHYSIOLOGY, 166(3), 1255-1268. doi:10.1104/pp.114.247197Feng, P. C. C., Chiu, T., & Douglas Sammons, R. (2003). Glyphosate efficacy is contributed by its tissue concentration and sensitivity in velvetleaf (Abutilon theophrasti). Pesticide Biochemistry and Physiology, 77(3), 83-91. doi:10.1016/j.pestbp.2003.08.005Koger, C. H., & Reddy, K. N. (2005). Role of absorption and translocation in the mechanism of glyphosate resistance in horseweed (Conyza canadensis). Weed Science, 53(1), 84-89. doi:10.1614/ws-04-102rPerez-Jones, A., Park, K. W., Colquhoun, J., Mallory-Smith, C., & Shaner, D. (2005). Identification of glyphosate-resistant Italian ryegrass (Lolium multiflorum) in Oregon. Weed Science, 53(6), 775-779. doi:10.1614/ws-04-200r.1Morin, F., Vera, V., Nurit, F., Tissut, M., & Marigo, G. (1997). Glyphosate Uptake inCatharanthus roseusCells: Role of a Phosphate Transporter. Pesticide Biochemistry and Physiology, 58(1), 13-22. doi:10.1006/pest.1997.2280Jander, G., Baerson, S. R., Hudak, J. A., Gonzalez, K. A., Gruys, K. J., & Last, R. L. (2003). Ethylmethanesulfonate Saturation Mutagenesis in Arabidopsis to Determine Frequency of Herbicide Resistance. Plant Physiology, 131(1), 139-146. doi:10.1104/pp.102.010397Brotherton, J. E., Jeschke, M. R., Tranel, P. J., & Widholm, J. M. (2007). Identification of Arabidopsis thaliana variants with differential glyphosate responses. Journal of Plant Physiology, 164(10), 1337-1345. doi:10.1016/j.jplph.2006.08.008Forment, J., Gadea, J., Huerta, L., Abizanda, L., Agusti, J., Alamar, S., 
 Beltran, J. P. (2005). Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Molecular Biology, 57(3), 375-391. doi:10.1007/s11103-004-7926-1Medina, I., Carbonell, J., Pulido, L., Madeira, S. C., Goetz, S., Conesa, A., 
 Dopazo, J. (2010). Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Research, 38(suppl_2), W210-W213. doi:10.1093/nar/gkq388Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9), 5116-5121. doi:10.1073/pnas.091062498Koger, C. H., Shaner, D. L., Krutz, L. J., Walker, T. W., Buehring, N., Henry, W. B., 
 Wilcut, J. W. (2005). Rice (Oryza sativa) response to drift rates of glyphosate. Pest Management Science, 61(12), 1161-1167. doi:10.1002/ps.1113Flexas, J., Ortuño, M. F., Ribas-Carbo, M., Diaz-Espejo, A., FlĂłrez-Sarasa, I. D., & Medrano, H. (2007). Mesophyll conductance to CO2in Arabidopsis thaliana. New Phytologist, 175(3), 501-511. doi:10.1111/j.1469-8137.2007.02111.xGenty, B., Briantais, J.-M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 990(1), 87-92. doi:10.1016/s0304-4165(89)80016-

    Comprehensive cross-platform comparison of methods for non-invasive EGFR mutation testing : results of the RING observational trial.

    Get PDF
    Abstract Several platforms for noninvasive EGFR testing are currently used in the clinical setting with sensitivities ranging from 30% to 100%. Prospective studies evaluating agreement and sources for discordant results remain lacking. Herein, seven methodologies including two next-generation sequencing (NGS)-based methods, three high-sensitivity PCR-based platforms, and two FDA-approved methods were compared using 72 plasma samples, from EGFR-mutant non-small-cell lung cancer (NSCLC) patients progressing on a first-line tyrosine kinase inhibitor (TKI). NGS platforms as well as high-sensitivity PCR-based methodologies showed excellent agreement for EGFR-sensitizing mutations (K = 0.80-0.89) and substantial agreement for T790M testing (K = 0.77 and 0.68, respectively). Mutant allele frequencies (MAFs) obtained by different quantitative methods showed an excellent reproducibility (intraclass correlation coefficients 0.86-0.98). Among other technical factors, discordant calls mostly occurred at mutant allele frequencies (MAFs) ≀ 0.5%. Agreement significantly improved when discarding samples with MAF ≀ 0.5%. EGFR mutations were detected at significantly lower MAFs in patients with brain metastases, suggesting that these patients risk for a false-positive result. Our results support the use of liquid biopsies for noninvasive EGFR testing and highlight the need to systematically report MAFs. Keywords: NGS; circulating free DNA; epidermal growth factor receptor; non-small-cell lung cancer; osimertinib; tyrosine kinase inhibitor

    Riesgo quirĂșrgico tras resecciĂłn pulmonar anatĂłmica en cirugĂ­a torĂĄcica. Modelo predictivo a partir de una base de datos nacional multicĂ©ntrica

    Get PDF
    Introduction: the aim of this study was to develop a surgical risk prediction model in patients undergoing anatomic lung resections from the registry of the Spanish Video-Assisted Thoracic Surgery Group (GEVATS). Methods: data were collected from 3,533 patients undergoing anatomic lung resection for any diagnosis between December 20, 2016 and March 20, 2018. We defined a combined outcome variable: death or Clavien Dindo grade IV complication at 90 days after surgery. Univariate and multivariate analyses were performed by logistic regression. Internal validation of the model was performed using resampling techniques. Results: the incidence of the outcome variable was 4.29% (95% CI 3.6-4.9). The variables remaining in the final logistic model were: age, sex, previous lung cancer resection, dyspnea (mMRC), right pneumonectomy, and ppo DLCO. The performance parameters of the model adjusted by resampling were: C-statistic 0.712 (95% CI 0.648-0.750), Brier score 0.042 and bootstrap shrinkage 0.854. Conclusions: the risk prediction model obtained from the GEVATS database is a simple, valid, and reliable model that is a useful tool for establishing the risk of a patient undergoing anatomic lung resection

    Psychometric characteristics of the Spanish version of instruments to measure neck pain disability

    Get PDF
    [EN] Background. The NDI, COM and NPQ are evaluation instruments for disability due to NP. There was no Spanish version of NDI or COM for which psychometric characteristics were known. The objectives of this study were to translate and culturally adapt the Spanish version of the Neck Disability Index Questionnaire (NDI), and the Core Outcome Measure (COM), to validate its use in Spanish speaking patients with non-specific neck pain (NP), and to compare their psychometric characteristics with those of the Spanish version of the Northwick Pain Questionnaire (NPQ). Methods. Translation/re-translation of the English versions of the NDI and the COM was done blindly and independently by a multidisciplinary team. The study was done in 9 primary care Centers and 12 specialty services from 9 regions in Spain, with 221 acute, subacute and chronic patients who visited their physician for NP: 54 in the pilot phase and 167 in the validation phase. Neck pain (VAS), referred pain (VAS), disability (NDI, COM and NPQ), catastrophizing (CSQ) and quality of life (SF-12) were measured on their first visit and 14 days later. Patients' self-assessment was used as the external criterion for pain and disability. In the pilot phase, patients' understanding of each item in the NDI and COM was assessed, and on day 1 test-retest reliability was estimated by giving a second NDI and COM in which the name of the questionnaires and the order of the items had been changed. Results. Comprehensibility of NDI and COM were good. Minutes needed to fill out the questionnaires [median, (P25, P75)]: NDI. 4 (2.2, 10.0), COM: 2.1 (1.0, 4.9). Reliability: [ICC, (95%CI)]: NDI: 0.88 (0.80, 0.93). COM: 0.85 (0.75,0.91). Sensitivity to change: Effect size for patients having worsened, not changed and improved between days 1 and 15, according to the external criterion for disability: NDI: -0.24, 0.15, 0.66; NPQ: -0.14, 0.06, 0.67; COM: 0.05, 0.19, 0.92. Validity: Results of NDI, NPQ and COM were consistent with the external criterion for disability, whereas only those from NDI were consistent with the one for pain. Correlations with VAS, CSQ and SF-12 were similar for NDI and NPQ (absolute values between 0.36 and 0.50 on day 1, between 0.38 and 0.70 on day 15), and slightly lower for COM (between 0.36 and 0.48 on day 1, and between 0.33 and 0.61 on day 15). Correlation between NDI and NPQ: r = 0.84 on day 1, r = 0.91 on day 15. Correlation between COM and NPQ: r = 0.63 on day 1, r = 0.71 on day 15. Conclusion. Although most psychometric characteristics of NDI, NPQ and COM are similar, those from the latter one are worse and its use may lead to patients' evolution seeming more positive than it actually is. NDI seems to be the best instrument for measuring NP-related disability, since its results are the most consistent with patient's assessment of their own clinical status and evolution. It takes two more minutes to answer the NDI than to answer the COM, but it can be reliably filled out by the patient without assistanceS
    corecore