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Abstract

enzyme inhibition.

Background: The increased selection pressure of the herbicide glyphosate has played a role in the evolution of
glyphosate-resistance in weedy species, an issue that is becoming a threat to global agriculture. The molecular
components involved in the cellular toxicity response to this herbicide at the expression level are still unidentified.

Results: In this study, we identify the protein kinase GCN2 as a cellular component that fosters the action of
glyphosate in the model plant Arabidopsis thaliana. Comparative studies using wild-type and gcn2 knock-out
mutant seedlings show that the molecular programme that the plant deploys after the treatment with the
herbicide, is compromised in gcn2. Moreover, gcn2 adult plants show a lower inhibition of photosynthesis, and both
seedlings and adult gcn2 plants accumulate less shikimic acid than wild-type after treatment with glyphosate.

Conclusions: These results points to an unknown GCN2-dependent factor involved in the cascade of events
triggered by glyphosate in plants. Data suggest either that the herbicide does not equally reach the target-enzyme
in a gcn2 background, or that a decreased flux in the shikimate pathway in a gcn2 plants minimize the impact of
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Background
Since its introduction in 1974, glyphosate has become the
world most widely used herbicide, especially after the
emergence of transgenic resistant crops in 1996. In 2007,
more than 80% of the transgenic crops worldwide were
engineered to be glyphosate-resistant [1]. An increase in
the application frequency of the herbicide has, however,
played a role in the evolution of glyphosate-resistance in
weedy species, an issue that is becoming a threat to global
agriculture. At least three of the ten most conspicuous
weeds have evolved resistant to glyphosate after one dec-
ade of transgenic crops [2]. In this scenario, understanding
the molecular responses to glyphosate can be useful for
future biotechnological approaches.

Resistance to herbicides can be achieved by altera-
tions in the gene encoding the target protein, causing
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a reduction in the efficacy of the herbicide (target-site
resistance) or by any other mechanism independent
of the target enzyme (non-target-site resistance, NTSR)
[3]. NTRS, that includes decreased herbicide penetration
into the plant, decreased rate of herbicide translocation
and increased rate of herbicide sequestration/metabolism,
has been reported to be the most widespread type of
resistance to glyphosate [4]. Although several of these
mechanisms have been proposed [5,6], the molecular com-
ponents involved are still unidentified.

Glyphosate affects plants systemically after application
to the leaf surface. The phytotoxic symptoms develop
slowly, plant death requiring days or weeks depending
on the dose applied [7]. Inhibition of its target enzyme
5-enolpyruvylshikimate-3-phosphate-synthase (EPSPs; EC
2.5.1.19), inhibits the shikimate pathway, leading to a shor-
tage in aromatic amino acids, quinones and cofactor bio-
synthesis. This is considered by some authors as the main
cause of glyphosate toxicity, consistent with the slow
development of symptoms [7]. In contrast, others con-
sider that shikimate accumulation, due to a decrease in
feedback inhibition through the pathway, leads to an
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energy drain imposed by a utilization of one phospho-
enolpyruvate (PEP) molecule and one ATP molecule for
every molecule of shikimate-3-phosphate accumulated
and 3 ATP’s for every NADPH ([8,9]. Herbicides inhi-
biting amino acid biosynthesis also induce non-target
indirect effects, as proteolysis and an increase in free
amino acids [10]. The last omics studies [11,12] reveal
that the full picture of molecular disturbances after
EPSP inhibition is complex and far from being totally
understood. One of the biochemically best characterized
cellular events after glyphosate treatment is the rapid
shutdown of photosynthesis [13]. Cessation of carbon
fixation, decrease in chlorophyll content and electron
transport has been reported to occur soon after herbi-
cide application. This impairment is not only a meta-
bolic perturbation but involves gene expression and
protein contents. Turfgrass and soybean plants exposed
to glyphosate repressed most genes related to photosyn-
thesis [14,15] and repression of photosynthetic proteins
was observed in rice after glyphosate treatment [11].
Besides photosynthesis, other cellular processes such as
cell cycle [16] cell motility (in bacteria) [12], cell death
and redox homeostasis [11] are directly or indirectly
affected by glyphosate.

In yeast, amino acid starvation is followed by activa-
tion of the protein kinase GCN2 by uncharged tRNAs.
This enzyme phosphorylates the a subunit of eukaryotic
translation initiation factor 2 (elF2a), inhibiting the con-
version of elF2y-GDP to elF2y -GTP, preventing further
cycles of translation initiation and suppressing protein
synthesis [17]. Phosphorylation of elF2a not only causes
a general reduction of protein synthesis, but initiates the
selective translation of GCN4, an mRNA containing short
open reading frames (ORF) upstream of the long, protein-
coding ORF. Its translation upon amino acid starvation
produces a transcription factor that activates amino acid
biosynthesis genes, helping the cell to recover from the
stress. This regulatory response is known as general amino
acids control (GAAC) [18].

Plants contain a GCN2 homologue kinase that comple-
ments the gcn2 yeast mutant strain, indicating that the
GAAC response could be also operating in plants [19]. In
Arabidopsis plants with the aromatic amino acids biosyn-
thesis impaired as imposed by glyphosate treatment, elF2a
is phosphorylated, and this phosphorylation is GCN2-
dependent, as it was abolished in an insertion line in the
GCN2 gene [20]. Phosphorylation of elF2a by GCN2
has been observed under several abiotic stresses [20,21],
and a GCN2-dependent translational arrest has been ob-
served after treatment with chlorsulfuron, an inhibitor of
branched amino acid biosynthesis [21]. Despite these data,
the importance of GCN2 pathway as a regulatory mechan-
ism in plants is still under debate [22-24]. The potential
homologous gene of the yeast GCN4 has not been found
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in Arabidopsis, and little evidence was found for the
involvement of AtGCN2 in the regulation of expression of
amino acid biosynthesis genes, suggesting that this kinase
could be playing another role than just regulating amino
acid biosynthesis [25]. The role of GCN2 in the plant
response to glyphosate remains elusive.

The transcriptional response to glyphosate has been
determined in the bacteria Escherichia coli [12] in the
grass Festuca [14] and in soybean [15] and in all cases a
large number of genes change in expression in response
to the herbicide. In the model plant A. thaliana, how-
ever, only a few genes (sixteen) were detected as modu-
lated by glyphosate in leaves [26]. This discrepancy, and
the unexpected behavior of aAtGCN2 in the regulation
of amino acid biosynthetic genes, prompted us to re-
investigate the transcriptional response to glyphosate in
Arabidopsis and to give some insights into the role of
GCN?2 in the triggering of this response.

In this study we show that glyphosate treatment trig-
gers a complex transcriptional response in Arabidopsis
plants. Surprisingly, many of these responses are not trig-
gered or are altered in a gcn2 mutant line. We also show
that shikimate accumulation in gcn2 plants after herbicide
treatment is lower than in wild-type plants. All these re-
sults indicate that GCN2 is an important factor in the re-
sponse of plants to glyphosate and that this protein kinase
fosters the action of the herbicide by some unknown
mechanism.

Results

Glyphosate treatment causes a dramatic shift of the
Arabidopsis transcriptome

To get a better understanding of the transcriptional
changes that glyphosate treatment provoke in Arabidopsis
plants, 16-day-old plantlets were submerged in 200 uM
glyphosate for 1 min, and gene expression was analysed
6 h after treatment. None of the glyphosate-derived phe-
notypic effects in the plant were visible at this time.
Compared to mock-treated plants of the same age, more
than 200 gene ontology (GO) biological processes were
altered with a threshold applied of 0.05 (adjusted p-value,
Methods). As expected, GO categories such as response
to drug (adj. p-value 0.004) or multidrug transport (adj.
p-value 0.003) are enriched in the glyphosate treated
sample. In fact, 10 out the 30 most induced genes are
ABC transporters, glutathione-transferases or glycosyl-
transferases [see Additional file 1], enzymes known to
be involved in the detoxification of herbicides [27]. ABC
transporter expression has been recently correlated with
glyphosate resistance in horseweed [28]. Also expected,
Arabidopsis plants respond to glyphosate activating the
metabolism of aromatic amino acids (AAA) (0.1x10°), in-
cluding some genes in the biosynthetic pathways, but also
genes of the secondary metabolism pathways that have
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AAAs as precursors (such as lignin, auxins, phenylpropa-
noid and others). For instance, genes coding for arogenate
dehydratase, which catalyze the last step of phenylalanine
(Phe) biosynthesis, and anthranilate synthase, phosphori-
bosylanthranilate transferase, indole-3-glycerol-phosphate
synthase and trypthophan synthase, involved in tryptho-
phan (Trp) biosynthesis, are all induced by glyphosate.
Moreover, genes coding for phenylalanine-ammonia-lyase,
(involved in phenylpropanoids biosynthesis, using Phe as
a precursor), CYP79B3, or CYP71B15, (involved in TIAA
and camalexin biosynthesis, respectively, both using Trp
as a precursor) are also induced. In addition, a plethora
of genes belonging to many defense-related categories,
including wounding, heat, oxidative, osmotic, cold, and
biotic stresses are also induced, suggesting that not only
specific, but also general responses, are triggered by a
particular stress. Finally, categories such as aging or
programmed cell death are enriched among the induced
genes, revealing that, as early as 6 h after herbicide
treatment, the plant could be already committed to die
(see Table 1 and Additional file 2).

Most remarkable, the herbicide-treated plants show a
dramatic down-regulation of the photosynthesis (7.06x10~>°
adj. p-value), including chlorophyll biosynthesis (3.89x10™%),
electron transport chain (1.26x107%%), and, to a lesser
extent, CO, fixation (4.68x107%%) (Table 1 and Additional
files 3 and 4), a fact that was already observed at a later
time-point (5 days after treatment) by Cebeci and Budak
[14], in turtgrass. As examples, protochlorophyllide oxi-
doreductase (AT1G03630), involved in chlorophyll bio-
synthesis, is repressed more than 9 times; and PsbQ
(AT1G14150) and PSB29 (AT2G20890), part of the PSIL,
are repressed more than 4 times. Interestingly, categor-
ies related to translation (including genes for the trans-
lation elongation factor EF1B (AT1G64510) and some
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ribosomal proteins (AT2G24090, AT1G07320 or AT1G
48350, among others, repressed more than 4 times),
growth and cell division (including genes encoding cyclin
Al;1 (AT1G44110) or cyclin D1;1(AT1G70210), re-
pressed more than 4 times) are also down-regulated
[see Additional file 4], probably indicating that plant
metabolism is being reprogrammed to cope with the
stress situation [29].

The presence of the protein kinase Gen2 is necessary for
the deployment of early cellular responses after
glyphosate treatment

GCN?2 is a protein kinase that phosphorylates the a sub-
unit of the elF2 translation initiation factor, a key regula-
tory mechanism that arrest general protein synthesis and
allows the re-stablishment of homeostasis in eukaryotes
after several stress conditions [17]. In Saccharomyces cere-
visiae, GCN2 is activated under amino acid starvation and
triggers a general translational arrest but also promotes
the selective translation of the transcription factor GCN4.
This factor activates transcription of several hundred
genes, including those involved in amino acid biosynthesis
[17]. As glyphosate is known to block AAA biosynthesis,
we wanted to know whether a similar mechanism was
operating in plants, and also to identify other cellular re-
sponses to glyphosate eventually regulated by GCN2. We
compared the transcriptome of 16-day-old Arabidopsis
wild-type seedlings with that of gen2 mutant seedlings of
the same age [20], both at 6 h after glyphosate treatment.
As described in Zhang et al. [20] and shown in Additional
file 5: Figure S2, gen2 plants are phenotypically indistin-
guishable from wild-type plans at this and all stages of
growth. Previously, we had compared the transcriptome
of the same plants under normal conditions and deter-
mined that only 24 genes were changing their expression

Table 1 Selected categories enriched in Arabidopsis seedlings after glyphosate treatment (for a complete list, see

Additional file 2)

Selected GO categories enriched in glyphosate-induced genes

Selected GO categories enriched in glyphosate-repressed genes

GO biological process Adj. P-value GO biological process Adj. P-value
Proteolysis 6.74x107%* Photosynthesis 7.06x10"%°
Defense response 560%10" Microtubule-based movement 3711077
Response to wounding 868x107"" Photosynthetic electron transport chain 126x1078
Response to bacterium 7.88x1071° Porphyrin biosynthetic process 3.89x1077
Aromatic amino acid metabolic process 0.000001169 Cell division 0.0000295
Response to osmotic stress 0.0000400 Electron transport chain 0.000260
Cell death 0.001031 Translation 0.00127
Response to oxidative stress 0.00318 Fixation of carbon dioxide 0.00468
Multidrug transport 0.00373 Regulation of cell size 0.00614
Response to drug 0.00483 Cell growth 0.011

Selected categories of a Gene Set Enrichment Analysis using Fatiscan (Medina et al. [51]) on the expression values of 16-days-old Arabidopsis wild-type Landsberg
erecta seedlings treated with glyphosate, as described in Methods. For a complete list of GO categories (biological process) with an adjusted p-value lower than

0.05, see Additional file 2.
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using the selected criteria. [see Additional files 1 and 3].
As shown in Additional file 6: Figure S1, and as reported
by Zhang et al. [20], eIF2a phosphorylation indicates that,
after 6 h treatment, GCN2 kinase is activated in wild-type
plants.

Interestingly, more than a thousand genes are differen-
tially expressed in the gen2 mutant line after treatment
with glyphosate as compared with the wild-type, accord-
ing to the criteria specified in Methods. Looking at more
detail, around 75% of the genes regulated by glyphosate
are regulated with the same trend in the gcn2 plants, but
being the fold-change lower in the mutant plants [see
Additional files 1 and 3]. That is, a gene induced by gly-
phosate can still be induced in a gen2 mutant, but with a
lower fold-change. This effect is more remarkable for
those genes with the highest levels of expression. This
observation suggests that cellular responses to glypho-
sate are compromised although not totally abolished in
the gen2 mutant. The transcriptional repression of the
photosynthesis is the biological process most affected by
the lack of GCN2, as stated by GO biological processes
studies [see Additional file 7 and Table 2]: the expression
of genes belonging to photosynthesis processes is signifi-
cantly higher in gcn2 plants after glyphosate treatment
(1.59x107>* adjusted p-value, Figure 1B), indicating that
the repression that takes place in wild-type after glypho-
sate treatment is also compromised. The same effect is
observed for cell division, redox homeostasis and other
categories. Equally, among the genes previously shown
to be induced by glyphosate that are deregulated in the
gen2 mutant line are those involved in defense against
both biotic and abiotic stimulus. As reported by Zhang
et al. [20], our functional categories data show that
amino acid biosynthesis is not differentially regulated
between wild-type and gen2 plants (Additional file 4),
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although differences in expression were found for spe-
cific genes of the pathway (see Additional files 1 and 3).

gcn2 plants show less glyphosate-derived effects

The observed dependence on the GCN2 kinase in
glyphosate-induced responses was confirmed in adult
plants. 200 uM glyphosate was sprayed on four-week-
old Arabidopsis wild-type and gcn2 plants and growth
over the next three weeks after treatment was followed.
Again, gen2 plants are phenotypically indistinguishable
from wild-type plans at this stage of growth before the
treatment (Additional file 5: Figure S2). As observed in
Figure 1A, wild-type plants start showing typical phyto-
toxic glyphosate effects after 12—14 days. Meristems
and young tissues became chlorotic and disorganized.
In the following weeks, apical dominance was lost and
plants presented a characteristic shoot-branching phe-
notype (Figure 1B and C). Interestingly, these effects
were much less severe in gcn2 plants. Although a subtle
sensitivity could be observed the first days after treat-
ment (initial chlorosis at the meristem area, data not
shown), we did not observe severe glyphosate effects in
gen2 plants two-weeks after treatment, when chlorotic
tissues were clearly observed in wild-type plants. As
shown in Figure 1A, gcn2 rosettes continued growing
during the two weeks after the treatment, although new
leaves morphology was more compacted. Later, gcn2
plants recovered from the stress and were growing again
with a less severe branching-phenotype than wild-type
plants (Figure 1B-C).

To evaluate in more detail the biochemical differences
between both genotypes, the effects of glyphosate on vari-
ous parameters associated with photosynthetic was mea-
sured in non-chlorotic healthy leaves two-weeks after
treatment, when the first symptoms of the herbicide were

Table 2 Selected categories enriched in wild-type vs. gcn2 Arabidopsis seedlings after glyphosate treatment (for a

complete list, see Additional file 2)

Selected GO categories enriched in wild-type as compared with
gcn2 in glyphosate-induced genes

Selected GO categories enriched in gcn2 as compared with wild-type
in glyphosate -repressed genes

GO biological process Adj. p-value GO biological process Adj. p-value
Response to wounding 345%107%4 Photosynthesis 1.59x107%°
Response to bacterium 0.0000377 Microtubule-based movement 8.52x107 "
Autophagy 0.000157 Chlorophy! biosynthetic process 647x107°
Response to salt stress 0.000370 Photosynthesis electron transport 7.53x10°8
Response to osmotic stress 0.000402 Cell division 0.0000683
Response to fungus 0.00143 Regulation of cell size 0.001056
Multidrug transport 0.00650 Cell growth 0.0044

Cell death 0.00675 Electron transport chain 0.00716
Response to oxidative stress 0.0184 M phase of cell cycle 0.049

Selected categories enriched in wild-type or gcn2 plants after an Enrichment Analysis using FatiGo (Medina et al. [51]) on the differentially expresses genes
(fold-change > 2 and adjusted p-values < 0.05) in 16-day-old Arabidopsis wild-type Landsberg and gcn2 GT8351 seedlings treated with glyphosate as described in
Methods. For a complete list of GO categories (biological process) with an adjusted p-value lower than 0.05 see Additional files 4 and 7.
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Figure 1 Glyphosate effects over wild-type and gcn2 four-week old plants. Pictures show aspect of four-week old glyphosate-treated
Arabidopsis wild-type (Ler-0) and gcn2 GT8359 plants, after glyphosate treatment. The experiment was repeated three times using 48 individual
plants per genotype in every experiment. Mock-treated plants were looking similar (data not shown). General view of glyphosate-treated plants
two-weeks (A) and four weeks after treatment (B). (C) Close-up of Ler-0 and gcn2 plants from Figure 1B. (D) Apical leaves DAB-staining of

mock- and glyphosate-treated plants. Five independent plants were used as biological replicates, and two rosette leaves were sampled from each
plant. The experiment was repeated three times. (E) Relative transcript levels of LHCB 4.2 (At3g08940), LHCB 2.2 (At2g05070), and B6F (At5g36120)
in wild-type (Ler-0) and gcn2 plants. Data show mean and standard error of three independent biological replicates. Each replicate contains
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already visible in younger tissues. As shown in Table 3
and described previously in other works [30] and refer-
ences therein, photosynthetic rate, stomatal conductance,
transpiration and quantum efficiency of photosystem II
were rapidly inhibited in Ler-0 leaves sprayed with glypho-
sate as compared with mock-treated plants. The increase
in substomatal CO, concentration with decreasing sto-
matal conductance suggests biochemical limitations to
photosynthesis. Although no changes in Fv/Fm were
observed, the herbicide provoked a significant decrease
in chlorophyll content.

By contrast, the application of the herbicide has
negligible effects on photosynthetic measurements in

the gcn2 mutant plants. No significant differences were
observed between mock-treated and glyphosate-treated
plants on CO, assimilation, stomatal conductance,
quantum efficiency of photosystem II or maximal quantum
yield (Table 3). These results further confirm the depend-
ence on GCN2 of the glyphosate-induced repression of
photosynthesis.

These results agree with the relative expression of
several photosynthetic genes in both genotypes. We
analyzed by RT-PCR the expression of the three genes
most repressed by glyphosate in the seedlings experi-
ment, namely two light-harvesting complex genes (LHC
2.2 and LHC 4.2) and a gene involved in the assembly of
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Table 3 Effect of glyphosate application on the photosynthetic rate (Ay), stomatal conductance (g,), substomatal
CO, concentration (C;), transpiration rate (E), quantum efficiency of photosystem Il (PhiPS2), maximum quantum yield

efficiency (Fv/Fm) and SPAD index

Genotype Ay (umolm™2s™) g, (molm2s™")  C (umolmol™) E(mmolm™2s™") PhiPS2 Fv/Fm  SPAD (a.u.)

Ler Control 7.3a 0.13a 301b 33a 0.106a 0.822 33a
ghyphosate 5, 0.05b 328a 20b 0059b 0826y 27b

gcn2 Control 75 0.10 288a 3.1 0.134 0.834 34b
glyphosate 7 2ne 0.08xs 255b 2.6ns 0.125ys  0836ys  37a

Each value is the mean of eight independent determinations in different plants.

For each genotype, different letters indicate significant differences (P < 0.05); NS: not significant.

cytochrome bgf (At5g36120). These three genes were
not repressed in gen2 seedlings [see Additional file 3].
As shown in Figure 1E, expression of these genes was
repressed in wild-type plants after glyphosate treat-
ment, but the effect was not observed in the gcn2-
treated plants, confirming the results obtained in
seedlings.

DAB staining is used as an efficient method to detect
hydroxen peroxide accumulation in plant tissues [31]
and H,O, increases have been described in plants
treated with glyphosate [9]. Young leaves of wild-type
plants after glyphosate treatment were stained using
DAB. As shown in Figure 1D, a dramatic accumulation
of H,O, is observed, preceeding the cell death ob-
served in the following days. As expected, gcn2 plants
of the same age did not show H,O, accumulation,
further confirming the dependence on GCN2 of
the oxidative-stress burst observed after glyphosate
treatment.

In summary, gene expression data, as well as glypho-
sate effects such as photosynthesis decay and oxidative
stress, suggest that gcn2 plants are less affected by
glyphosate than wild-type plants.

Shikimic acid accumulation is compromised in gcn2
plants after glyphosate treatment

Glyphosate inhibition of the enzyme 5-enolpyruvyl-
shikimate-3-phosphate synthase leads to reduced feedback
inhibition of the pathway, resulting in carbon flow to
shikimate-3-phosphate, which is converted into high
levels of shikimate [7]. Given that gcn2 plants were less
prone to glyphosate effects, as observed in the experi-
ments described above, we wanted to determine if the
target enzyme of glyphosate was inhibited in the same
way in both lines. Arabidopsis wild-type and gcn2 seed-
lings were treated with glyphosate as explained above,
and shikimic acid accumulation was measured three days
after treatment. The same experiment was performed in
four-weeks old plants, in the way explained above and in
Methods. As observed in Figure 2, basal levels of shikimic
acid are similar in both lines, either in seedlings or in adult
plants. However, 3-days after glyphosate application, shi-
kimic acid in wild-type seedlings has increased almost 20
times over the basal levels (46 times in adult plants treat-
ments), whereas gcn2 only accumulates half the amount
of shikimic acid that wild-type does (only 10 times in
seedlings, 20 times in adult plants). This trend indicates
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Figure 2 gcn2 plants accumulate less shikimate than wild-type. Quantification of shikimate levels in seedlings (A) and adult plants (B) 72 h
after mock treatment (Ler-0, gcn2) or glyphosate treatment (Ler-0 + gly, gcn2 + gly). Data show mean and standard error of ten independent
biological replicates. Asterisks represent significant differences between wild-type and gcn2 plants (t-test, *P < 0.05, **P < 0.01).
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that the target enzyme of glyphosate is not being
inactivated at the same extend in gen2 plants, or that the
metabolic flux to the pathway has been reduced in gcn2
plants.

Glyphosate uptake is not affected in gcn2 plants

In the plant, EPSPS is encoded in the nucleus and trans-
located to the chloroplast, where the aromatic amino
acids are synthesized [32]. The highest shikimate accu-
mulation occurs in the youngest tissues, suggesting that
glyphosate enters the plant and then translocates to the
active meristems to reach the target site, where its action
takes place preferentially [7]. Several reasons could then
account for the less glyphosate action observed in gcn2
plants. In one hand, glyphosate uptake and/or translo-
cation could be compromised. Less concentration of ac-
tive glyphosate will be present in the plant chloroplasts,
explaining the apparent resistance of gcn2 plants to the
herbicide. On the other hand, detoxification mechanisms
could be exacerbated in the mutant, inactivating the
herbicide.

The mechanisms of glyphosate uptake into plant cells
are not well understood. At least at low concentrations
of herbicide (in the micromolar range, as it is used in
this study) it seems to involve a phosphate transporter,
as glyphosate uptake is inhibited by sodium phosphate
and phosphonoformic acid, a competitor inhibitor of
phosphate transport in plants [33,34]. In order to
ascertain if gen2 plants were compromised in phosphate
transport, that could confer to these plants an advantage
in the presence of the herbicide, we performed germin-
ation assays of wild-type and gcn2 seeds in media with
phosphate deficiency. No differences were observed
between wild-type and gcn2 seedling when grown in
media containing 0-500 puM phosphate (data not shown),
indicating that gen2 plants are taking up phosphate in a
similar way as wild-type does. The same results were
observed in root-growth assays (data not shown).

Discussion

Little is known about the molecular events that contrib-
ute to non-target-site based resistance (NTSR), the com-
bination of mechanisms that limit to a non-lethal dose
the amount of herbicide reaching the target-site. In this
study, we identify GCN2 as a cellular component that
fosters the action of glyphosate in the model plant A.
thaliana. GCN2 is a conserved protein kinase respon-
sible for the phosphorylation of the initiation factor
elF2-a after a number of stress situations. In Arabidop-
sis, herbicide treatments, wounding, cold treatments,
UV or purine starvation has been described to activate
AtGCN2 [21] the only kinase able to phosphorylate
elF2-a in this species [20]. Phosphorylation of elF2-a
prevents further cycles of protein translation, and it is
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assumed that this helps the cell to conserve metabolic
resources until it has overcome the immediate biological
impact of the stress [29]. In this model, the activation of
GCN2 should then be beneficial for the plant to cope
with the stress. However, we have shown that the pres-
ence of GCN2 is somehow facilitating the action of the
herbicide, and cellular responses to glyphosate are not
triggered or attenuated in a mutant line that is not able
to phosphorylate elF2-a. This is not the first report
where the lack of GCN2 is conferring an advantage
when a particular stress is applied. In yeast, SCGCN2
acts also as a negative factor, conferring toxic effects on
growth under NaCl stress, and being a gen2 knock-out
strain able to grow normally under 400 mM NacCl [35].
In human tumor cells, HsGcn2 was shown to have an
unexpected proapoptotic effect under glucose deficiency
stress, and gcn2 knock-out cells are able to survive more
than wild-type under these stress conditions [36]. As
such, these stresses and the canonical amino acid
starvation may utilize distinct pathways that converge
on elF2a phosphorylation with opposing biological out-
comes [36]. It will be interesting to know whether a gcn2
background confers resistance to other abiotic stresses
in Arabidopsis, and to investigate if this resistance is
converging in a single factor for all stresses or in differ-
ent factors for every one of them.

Known responses to glyphosate include the rapid re-
pression of photosynthesis. Inhibition of CO, assimilation
and depletion of intermediates of the carbon reduction
cycle had been documented years ago [37] and these
effects had been attributed to an upregulated flux into the
shikimate pathway due to depletion downstream of EPSPs.
Recent transcriptomic assays revealed that this repression
could be also genetically regulated. In a comparative study
of Festuca species, Cebeci and Budak reported that, 5 days
after treatment with glyphosate, a marked repression of
photosynthetic genes, including chlorophyll biosynthesis,
photosystems and Calvin cycle enzymes was occurring
[14]. Consistent results were obtained in proteomic assays
performed in rice [11]. We have also observed repression
in gene expression in adult plants 15 days after treatment,
consistent with a clear inhibition of photosynthetic rate.
The dramatic repression of photosynthetic genes only 6 h
after treatment to Arabidopsis seedlings, when no visible
symptoms of leaf chlorosis were observed yet (Table 1),
suggests that besides a likely photosynthetic decrease due
to metabolic toxicity, an early genetically programmed in-
hibition of photosynthesis is also taking place. Consistent
with our data, repression in some photosynthetic genes
was observed in soybean sensitive plants only 4 h after
treatment with glyphosate [15]. This decay of photosyn-
thesis after glyphosate treatment is not observed in gcn2
plants, nor is the oxidative stress that characterizes the
herbicide effect (Table 2). Moreover, enzymes known to
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be involved in the detoxification of herbicides such as
ABC transporters, glutathione-transferases or glycosyl-
transferases [38,39] are dramatically activated after gly-
phosate treatment in wild-type plants, but unaltered or
weakly activated in gen2 plants [see Additional file 1].
Finally, shikimate accumulation in gcn2 plants compared
to wild-type clearly demonstrates that the lack of GCN2
becomes an advantage when plants are treated with this
herbicide.

At present, these data do not allow to discern at what
point the herbicide action benefits from the presence of
GCN2 in the cell. Glyphosate is said to starve cells of
aromatic amino acids, due to inhibition of the shikimate
pathway and the production of chorismate, the precur-
sor of phenylalanine, tryptophan and threonine. How-
ever, total amino acid pools after glyphosate treatment
rather increase than decrease [40,41] after the first days
after treatment, as a consequence of the induction of
some proteolytic activities [10] or are not much different
in glyphosate resistant soybean as compared to sensitive
cultivars [29]. The known mechanism of activation of
GCN2 through uncharged t-RNAs [18] also works in
Arabidopsis [42] and although not described in detail for
glyphosate, treatment with chlorsulfuron, that blocks
valine, leucine and isoleucine biosynthesis [20] yield a
peak of elF2-a phosphorylation 6 h after treatment but
return to basal levels after 24 h. Starvation of amino
acids and prolonged protein translational arrest via GCN2
are then unlikely to be the major cause of the slow effects
of glyphosate treatment. The involvement of GCN2 in the
glyphosate mode of action should then fall on the first
hours after the treatment, this conditioning the final effect
in the plant. How could GCN2 foster the action of the
herbicide? As stated above, the early activation of the kin-
ase in wild-type plants after glyphosate application, likely
due to the initial decay in aromatic amino acids, do not
avoid the expression of cellular factors involved in detoxi-
fication of xenobiotics. In some species, vacuolar seques-
tration is contributing to the resistance mechanism in
resistant variants [43]. If the same mechanism is working
in Arabidopsis, activation of GCN2 could impair vacuolar
membrane trafficking through inhibition of some im-
portant protein. Alternatively, the selective translation of
certain mRNAs with uORFs in the leader sequence, in
the same way of ScGCN4, in yeast, and HsATF4, in
humans [18], could facilitate translocation of glyphosate
to the young tissues, where the target enzyme is mainly
expressed and the action of glyphosate is more dra-
matic [7]. Reduced translocation to meristematic sinks
is a major mechanism of resistance in horseweed [44],
Italian ryegrass [45] or hairy fleabane [46]. However, no
homologous sequence of ScGCN4 has been found in
Arabidopsis so far, and a GCN2-dependent selective
translation of mRNAs is unknown. Finally, the absence
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of GCN2 activity in the mutant gen2 line could provide
a constitutive advantage in the mutant background that
diminished herbicide effects, independently of the post-
treatment GCN2 activation. One possibility was a higher
uptake of glyphosate in wild-type plants. Although the
mechanism of glyphosate uptake into plant cells is not
well understood, the involvement of a phosphate trans-
porter has been proposed [32,47]. gcn2 plants are not
more sensitive than wild-type to growth in phosphate
deficiency media, and microarray experiments over non-
treated seedlings [see Additional file 1] did not reveal dif-
ferences in gene expression that make suspect of phos-
phate transport missregulation, indicating that phosphate
transport is not compromised in gen2 plants. If phosphate
transporters are involved in glyphosate uptake in Arabi-
dopsis, then gen2 plants should be taking up the herbicide
at the same rate as wild-type plants.

Several attempts have been made to find genes in-
volved in glyphosate resistance using mutant collections
of A. thaliana [48,49]. In Brotherton et al., the same
concentration of glyphosate used in this study was used
in a germination assay to find EMS-mutagenized mutant
lines of Arabidopsis resistant to the herbicide, but no re-
sistant mutant was recovered [48]. If glyphosate resist-
ance single mutations were common, they should have
been found in these saturation mutagenesis studies [47].
The lack of GCN2 does not confer resistance to glypho-
sate in germination assays (data not shown). In a seed-
ling assay performed by Zhang et al, the gcn2 mutant
line showed sensitivity to glyphosate treatment [20].
However, we were not able to find this sensitivity in a
similar experiment using plants in the same develop-
mental stage (data not shown). May be subtle differences
in the experimental conditions are the cause of this ap-
parent discrepancy. A gen2 knock-out mutant conferring
resistance or sensitivity to the same stress has been al-
ready reported in animal cell cultures, GCN2 acting as a
molecular switch that shifts cells from a proapoptotic to
a cytoprotective state in response to glucose deficiency
[35], depending on the duration of the stress. In our
experimental setup, we have shown that shikimate is not
accumulating and gene activation is not being triggered
at the same rate than in wild-type plants, indicating that
this protein kinase could be an important clue to disco-
ver components involved in the resistance to this herbi-
cide. “Glyphosate is as important to world agriculture as
penicillin is to human health” stated Stephen Powles,
director of the Australian Herbicide Resistance Initiative
(http://www.ahri.uwa.edu.au). Given the spread of gly-
phosate resistance weeds around the planet and the eco-
nomic importance for agriculture, understanding the
mechanisms of such resistance could help to design
new biotechnological approaches for a more efficient
use of this important herbicide.
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Conclusions

Several mechanisms have been proposed for non-target
based resistance to glyphosate, but any study has so far
identified any gene that could be directly involved or
influencing the final effect of this herbicide in the plant.
We have demonstrated that the translational regulator
GCN2 is fostering the action of the herbicide by an
unknown mechanism. The loss-of-function gcn2 mutant
in the model plant A. thaliana emerge as an important
tool to decipher the way glyphosate enters the plant and
reach its target site. This information will help to design
new strategies to preserve the use of glyphosate in the
emerging glyphosate-resistance-weeds era.

Methods

Plant growth and treatments

A. thaliana accession Landsberg erecta (Ler-0) was used
in this study. Genetrap GT8359, containing a Ds trans-
posable element interrupting the GCN2 gene [20] was
obtained from Cold Spring Harbor Laboratory, New
York (http://genetrap.cshl.edu/).

Seeds were pretreated in 70% ethanol for 20 min,
surface-sterilized in 2.5% bleach for 10 min, and washed
with distillated water at least five times. After stratifica-
tion at 4°C in the dark for 5 days, seeds were sown on
1% agar-containing MS Salts, 1% sucrose, pH 5.5, and
grown at 23°C with a 16-h-light/8-h-dark cycle.

For experiments at seedling stage, 16-day-old plantlets
(see Additional file 5: Figure S2 for pictures) were sub-
merged in 200 pM glyphosate (SIGMA) or distilled water
(mock) for 1 minute, and incubated for further growth on
liquid MS medium, 1% sucrose, pH 5.5, under the same
conditions. Samples for microarray experiments were
collected 6 h after treatment. Samples for shikimate assays
were collected 72 h after treatment. Visual inspection was
observed during the next two weeks after treatment.

For experiments in adult plants, 10 to 15-day-old plant-
lets were transferred to soil and grown at 23°C under
short-day conditions (8-h-light/16-h-dark). Glyphosate
treatments were done three-weeks later (see Additional
file 5: Figure S2 for pictures). Plants were sprayed with
200 uM glyphosate once (or distilled water for mock
treatments), using a standard sprayer by applying three
pulses to every plant at a distance of 10-15 cm from
the rosette (aprox 250 pL per plant), and incubated for
further growth under the same conditions. Expression
analysis by RT-PCR, DAB staining and photosynthetic
measurements were done two-weeks after treatment.
Visual inspection was followed during the next four
weeks after treatment.

Microarray experiments
Total RNA of glyphosate- and mock-treated 16-day-old
seedlings was extracted using RNeasy kit (Qiagen). 1.5 pg
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of total RNA was labeled using MessageAmp II amplifi-
cation kit from Life Technologies, following manufac-
turer instructions. Labeling was done using Cy3 and
Cy5 dyes from GE (RPN5661). Before hybridization,
slides were pre-hybridized at 42°C for 45 m in 5xSSC,
0.1%SDS and 0.1 mg/mL BSA. Microarray hybridiza-
tions and washings were done in manual chambers at
42°C, according to Forment et al. [50]. Scanning and
Image Analysis was performed using GenePix Pro 6.0
software (Molecular Devices).

For wild type vs. wild type + Glyphosate, two biological
replicates were done. Expression ratios in both microar-
rays were averaged and considered for further analysis if
equal trend (induction or repression) was observed in
both replicates. Gene set Enrichment Analysis was done
using Fatiscan [51] taking as significant those categories
with and adjusted p-value lower than 0.05.

For gcn2 mutant + Glyphosate vs. wild type + Glypho-
sate, three biological replicated were done swapping the
dyes in one of them. A gene was considered differentially
expressed if average fold-change was higher than 2 and
had a FDR <5% after a SAM test [52]. Functional ana-
lysis was done using FatiGO [51] taking as significant
those categories with and adjusted p-value lower than
0.05. The same analysis was performed for gcn2 mutant
vs. wild type without glyphosate.

These microarrays data have been included in the GEO
Omnibus database with the reference numbers GSE
56146 and GSE 56147.

Shikimate assay

Shikimate determination was done 3 days after treatment
in seedlings and 7 days after treatment in adult plants. For
the seedling assay, fresh weight was annotated before
freezing. From each adult leaf, three discs (4 mm diameter
using a micropunch) were placed in a 2-ml tube. Seedlings
and discs were frozen with liquid nitrogen and kept at —-80
until use. Extraction of shikimate was performed as de-
scribed in Koger et al. [53]. Vials were removed from the
freezer and 0.25 M HCI was added to each vial (1 ml per
100 mg FW or 100 pl per leaf disc). Vials were mixed by
vortexing and incubated at room temperature for 1.5 h.
Afterwards the solution was frozen and kept at —20°C
until analysis. Shikimate was analyzed by HPLC as de-
scribed before [40].

Photosynthetic measurements

Gas exchange and chlorophyll fluorescence measure-
ments were performed as described by Flexas et al. [54].
Instantaneous determinations of net CO, assimilation
rate (Ay), stomatal conductance (gg), transpiration rate
(E) and substomatal CO, concentration (C;) were carried
out at steady-state conditions under saturating light
(1000 pmol m™2 s7'), a vapour pressure difference (vpd)
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between 1 and 2 kPa and 400 ppm CO, with a LI-6400
(LICOR, Nebraska, USA). The actual photochemical
efficiency of photosystem II (PhiPS2) was determined
by measuring steady-state fluorescence (F;) and max-
imum fluorescence (F,,’) during a light-saturating pulse
(8000 pmol m2 s7') [55]. Maximal photochemical effi-
ciency (F,/F,,) on dark adapted leaves was measured with
a MINI PAM fluorometer (Walz, Effeltrich, Germany).
SPAD values were measured with a chlorophyll meter
SPAD-502 (Konica Minolta, Osaka, Japan). One measure-
ment per plant was taken on the 8™ to 10™ leaf from the
apex, and for each genotype and treatment, 8 different
plants were measured.

DAB staining

In situ detection of hydrogen peroxide was performed
by staining with diaminobenzidine (DAB) staining, ac-
cording to Daudi et al. [31] with modifications. Briefly,
rosette leaves were incubated in staining buffer (1 mg/mL
DAB containing Tween 20 (0.05% v/v) and 50 mM
sodium phosphate buffer (pH 3.8) and vacuum infiltrated
applying 3 pulses of 1.5 m, and stained for 24 h at room
temperature. Leaves were fixed in ethanol:glycerol:acetic
acid 3:1:1 (bleaching solution) placed in a water bath at
95°C for 15 m. Bleaching solution was replaced and plants
were visualized under white light and photographed.

Real-time PCR

For RT-PCR experiments, total RNA was extracted using
RNeasy kit (Qiagen) and treated with DNase I to remove
genomic DNA. cDNA was obtained using the Maxima
First Strand cDNA Synthesis Kit (Fermentas). Quantitative
real-time PCR was performed in a 7500 Fast Real-Time
PCR System, from Applied Biosystems, using EvaGreen as
a fluorescent reporter and Taq polymerase (Biotools).
Primers were designed using PRIMER3 software. Actin 8
(At1g49240) was used as an internal control (Fw 5'-
AGTGGTCGTACAACCGGTATTGT; Rv 5'- GAGGA
TAGCATGTGGAAGTGAGAA). Primers for LHCB 4.2
(Fw 5'- CCACTCTTGGCGCTATCAC; Rv 5- GCC
GATCACTAACACTTCGAT). Primers for LHCB 2.4
(Fw 5'- AGCGACCTCATCCAAAAGG; Rv 5'- TCC
GAGAATGGTCCCAAGTA). Primers for B6F (Fw 5'-
AGTGACCACCAGCTTCGTCT; Rv 5'- AAGAGACG
TGGATCGATTGC). The reaction commenced at 95°C
for 5 m, followed by 40 cycles of 15 s at 95°C, 30 s at
55°C, and 30 s at 72°C. Data were analyzed using 7500
Applied Biosystem proprietary software v.2.0.4.

Availability of supporting data
The data sets supporting the results of this article are avail-
able in the GEO repository (GSE56146 and GSE56147).
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Additional files

Additional file 1: File showing genes induced by glyphosate in
16-day-old Arabidopsis wild-type Landsberg and in gcn2 mutant.

Additional file 2: GO categories (biological process) enriched in
16-day-old Arabidopsis wild-type Landsberg seedlings treated with
glyphosate compared with mock-treated plants.

Additional file 3: File showing genes repressed by glyphosate in
16-day-old Arabidopsis wild-type Landsberg seedlings and in gcn2
mutant.

Additional file 4: GO categories (biological process) enriched in
16-day-old Arabidopsis wild-type Landsberg seedlings treated with
glyphosate compared with treated gcn2 plants.

Additional file 5: Figure S2. Pictures showing a comparison of
wild-type (Ler) and gcn2 plants at the seedling stage (16-day-old) grown
in MS plates (A), at three-weeks old plants (B) and four-weeks old plants (C).
White bar indicates 1 cm.

Additional file 6: Figure S1. Western blot showing inmunodetection
of phosphorylated elF2a in protein extracts of Arabidopsis seedlings used
for microarray experiments (upper panel). Coomassie staining of a band
of 45 kDa (lower panel) was used as a loading control.

Additional file 7: GO categories (biological process) enriched in

16-day-old Arabidopsis gcn2 seedlings treated with glyphosate
compared with wild-type-treated plants.
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