18 research outputs found

    Permafrost is warming at a global scale

    Get PDF
    Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged

    Dynamics of single mothers’ semantic strategies in Anglophone non-fiction [version 2; peer review: 1 approved, 2 approved with reservations]

    No full text
    The article discusses how the increasing number of self-help books for single mothers is meeting the demand for positive narratives about their experiences, which are often stereotyped in the media. The books offer a powerful tool for self-reflection, and content analysis reveals semantic strategies that authors use to construct, negotiate, and reframe single motherhood. The authors aim to challenge societal expectations and redefine what constitutes a family. There are still conflicting messages that perpetuate negative stereotypes and stigmas about single mothers, propelling identity negotiation. The seven principal semantic strategies applied in the texts include reframing, renaming, normalization, direct or indirect confrontations, distinctions, self-labelling, and vernacular. By using semantic strategies, authors aim to empower single mothers, challenge negative stereotypes, and create a sense of community. While there are limitations to the self-help genre, it remains a powerful tool for self-reflection, self-empowerment, and the construction of identity

    Using the Data of Geocryological Monitoring and Geocryological Forecast for Risk Assessment and Adaptation to Climate Change

    No full text
    Permafrost monitoring should be organized in different ways within undisturbed landscapes and in areas with technogenic impacts. The state and dynamics of permafrost are described by special indicators. It helps to characterize seasonal and long-term tendencies and link them with permafrost hazards estimation. The risk is determined by the hazard probability and the vulnerability of infrastructure elements. The hazard does not have integral indicators, but is determined by separate spatial and temporal characteristics. The spatial characteristics include the ground’s physical and cryolithological features that are linked with the history of the permafrost. The temporal characteristics are associated with the future evolution of the climate and anthropogenic pressures. The geocryological monitoring content and geocryological forecasting are interdependent and should be implemented together. The adaptation recommendations are based on the analytical algorithms and use the results of permafrost monitoring and permafrost state forecasting. The development of an adaptation program is a recognition of the company’s responsibility for the sustainable development of resource management territories. Risk management uses the methods of the flexible ground temperature regime management

    Multi-Parameter Protocol for Geocryological Test Site: A Case Study Applied for the European North of Russia

    No full text
    An increase in air temperature leads to a significant transformation of the relief and landscapes of the Arctic. The rate of permafrost degradation, posing a profound change in the Arctic landscape, depends on air temperature, vegetation cover, type of soils, surface and ground waters. The existing international circumpolar programs dedicated to monitoring the temperature state of permafrost TSP (Thermal State Permafrost) and active layer thickness CALM (Circumpolar Active Layer Monitoring) are not sufficient for a comprehensive characterization of geocryological conditions. Yet, no standardized protocol exists for permafrost monitoring and related processes. Here, we propose a novel multi-parameter monitoring protocol and implement it for two sites in the European part of the Russian Arctic: the Yary site along the coast of the Baydaratskaya Bay in the Kara Sea (68.9° N) within the continuous permafrost area and the Hanovey site in the Komi Republic (67.3° N) within the discontinuous permafrost area. The protocol includes drilling boreholes, determining the composition and properties (vegetation cover and soils), snow cover measurement, geophysical imaging, active layer estimation and continuous ground temperature measurements. Ground temperature measured in 2014–2020 revealed that amplitudes of surface temperature fluctuations had no significant differences between the Yary and Hanovey sites, while that the mean annual temperatures between the areas had a considerable difference of greater than 3.0 °C. The period of the presence of the active layer changed with the year (e.g., ranging between 135 and 174 days in the Yary site), showing longer when the air temperatures in summer and the preceding winter were higher. Electrical resistivity tomography (ERT) allowed determining the permafrost distribution and active layer thicknesses. Thermometry results were consistent with our geophysical data. Analyzing the composition and properties of frozen soils helped better interpret the data of geophysical and temperature measurements. By integrating the study of the soil properties, ground temperatures, and ERT, our work allowed us to fully characterize these sites, suggesting that it helps better understand the thermal state at any other research sites in the European north of Russia. Our suggested monitoring protocol enables calibrating and verifying the numerical and analytical models of the heat transfer through the earth’s surface

    Early IgE Production Is Linked with Extrafollicular B- and T-Cell Activation in Low-Dose Allergy Model

    No full text
    Despite its paramount importance, the predominant association of early IgE production with harmless antigens, via germinal-center B- and T-cell subpopulations or extrafollicular activation, remains unresolved. The aim of this work was to clarify whether the reinforced IgE production following the subcutaneous immunization of BALB/c mice with low antigen doses in withers adipose tissue might be linked with intensified extrafollicular or germinal-center responses. The mice were immunized three times a week for 4 weeks in the withers region, which is enriched in subcutaneous fat and tissue-associated B cells, with high and low OVA doses and via the intraperitoneal route for comparison. During long-term immunization with both low and high antigen doses in the withers region, but not via the intraperitoneal route, we observed a significant accumulation of B220-CD1d-CD5-CD19+ B-2 extrafollicular plasmablasts in the subcutaneous fat and regional lymph nodes but not in the intraperitoneal fat. Only low antigen doses induced a significant accumulation of CXCR4+ CXCR5- CD4+ extrafollicular T helpers in the withers adipose tissue but not in the regional lymph nodes or abdominal fat. Only in subcutaneous fat was there a combination of extrafollicular helper accumulation. In conclusion, extrafollicular B- and T-cell activation are necessary for early IgE class switching

    Application of Nuclear Inelastic Scattering Spectroscopy to the Frequency Scale Calibration of Ab Initio Calculated Phonon Density of States of Quasi-One-Dimensional Ternary Iron Chalcogenide RbFeSe2RbFeSe_{2}

    No full text
    This study aims to examine the applicability of nuclear inelastic scattering (NIS) and conventional Mössbauer spectroscopy for calibration of the frequency scale of ab initio calculated phonon density of states (PDOS) of iron ternary chalcogenides. NIS measurements are carried out on the quasi-one-dimensional ternary chalcogenide RbFeSe2 to obtain the partial PDOS of the iron atoms in the compound. We compare the experimental PDOS with our previous results on vibrational properties of RbFeSe2 obtained with density functional theory (DFT) ab initio calculations, conventional Mössbauer, and infra-red spectroscopies. The experimental PDOS measured by NIS is collated with the ab initio calculated one. The frequency correction factor for the ab initio results is determined as 1.077, in good agreement with value of 1.08 obtained previously from the temperature dependence of the Lamb–Mössbauer factor of the iron atoms in RbFeSe2. We conclude that nuclear inelastic scattering and temperature dependence of the Lamb–Mössbauer factor in conventional Mössbauer spectroscopy can be equally applied for evaluation of the frequency correction factor for ab initio calculated phonon density of iron of ternary chalcogenides

    Molecular mechanism of light-driven sodium pumping

    No full text
    The light-driven sodium-pumping rhodopsin KR2 from Krokinobacter eikastus is the only non-proton cation active transporter with demonstrated potential for optogenetics. However, the existing structural data on KR2 correspond exclusively to its ground state, and show no sodium inside the protein, which hampers the understanding of sodium-pumping mechanism. Here we present crystal structure of the O-intermediate of the physiologically relevant pentameric form of KR2 at the resolution of 2.1 Å, revealing a sodium ion near the retinal Schiff base, coordinated by N112 and D116 of the characteristic NDQ triad. We also obtained crystal structures of D116N and H30A variants, conducted metadynamics simulations and measured pumping activities of putative pathway mutants to demonstrate that sodium release likely proceeds alongside Q78 towards the structural sodium ion bound between KR2 protomers. Our findings highlight the importance of pentameric assembly for sodium pump function, and may be used for rational engineering of enhanced optogenetic tools
    corecore