6 research outputs found

    Enhancing Osteoconduction of PLLA-Based Nanocomposite Scaffolds for Bone Regeneration Using Different Biomimetic Signals to MSCs

    Get PDF
    In bone engineering, the adhesion, proliferation and differentiation of mesenchymal stromal cells rely on signaling from chemico-physical structure of the substrate, therefore prompting the design of mimetic “extracellular matrix”-like scaffolds. In this study, three-dimensional porous poly-L-lactic acid (PLLA)-based scaffolds have been mixed with different components, including single walled carbon nanotubes (CNT), micro-hydroxyapatite particles (HA), and BMP2, and treated with plasma (PT), to obtain four different nanocomposites: PLLA + CNT, PLLA + CNTHA, PLLA + CNT + HA + BMP2 and PLLA + CNT + HA + PT. Adult bone marrow mesenchymal stromal cells (MSCs) were derived from the femur of orthopaedic patients, seeded on the scaffolds and cultured under osteogenic induction up to differentiation and mineralization. The release of specific metabolites and temporal gene expression profiles of marrow-derived osteoprogenitors were analyzed at definite time points, relevant to in vitro culture as well as in vivo differentiation. As a result, the role of the different biomimetic components added to the PLLA matrix was deciphered, with BMP2-added scaffolds showing the highest biomimetic activity on cells differentiating to mature osteoblasts. The modification of a polymeric scaffold with reinforcing components which also work as biomimetic cues for cells can effectively direct osteoprogenitor cells differentiation, so as to shorten the time required for mineralization

    “Depart from evil, and do good”: Turning Axl from uncontrolled tumorigenic gene to biomarker for early detection of pancreatic cancer

    No full text
    Attempts to achieve early diagnosis are crucial to improve the outcome of patients with pancreatic ductal adenocarcinoma (PDAC). Here we present a critical evaluation of a recent study unraveling the potential of circulating AXL as a novel blood marker for early detection of PDAC and differential diagnosis from chronic pancreatitis (CP)

    Asfotase-α improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1

    No full text
    Individuals with neurofibromatosis type-1 (NF1) can manifest focal skeletal dysplasias that remain extremely difficult to treat. NF1 is caused by mutations in the NF1 gene, which encodes the RAS GTPase-activating protein neurofibromin. We report here that ablation of Nf1 in bone-forming cells leads to supraphysiologic accumulation of pyrophosphate (PP i), a strong inhibitor of hydroxyapatite formation, and that a chronic extracellular signal-regulated kinase (ERK)-dependent increase in expression of genes promoting PP i synthesis and extracellular transport, namely Enpp1 and Ank, causes this phenotype. Nf1 ablation also prevents bone morphogenic protein-2-induced osteoprogenitor differentiation and, consequently, expression of alkaline phosphatase and PP i breakdown, further contributing to PP i accumulation. The short stature and impaired bone mineralization and strength in mice lacking Nf1 in osteochondroprogenitors or osteoblasts can be corrected by asfotase- α enzyme therapy aimed at reducing PP i concentration. These results establish neurofibromin as an essential regulator of bone mineralization. They also suggest that altered PP i homeostasis contributes to the skeletal dysplasias associated with NF1 and that some of the NF1 skeletal conditions could be prevented pharmacologically

    Taxanes trigger cancer cell killing in vivo by inducing non-canonical T cell cytotoxicity

    No full text
    Although treatment with taxanes does not always lead to clinical benefit, all patients are at risk of their detrimental side effects such as peripheral neuropathy. Understanding the in vivo mode of action of taxanes can help design improved treatment regimens. Here, we demonstrate that in vivo, taxanes directly trigger T cells to selectively kill cancer cells in a non-canonical, T cell receptor-independent manner. Mechanistically, taxanes induce T cells to release cytotoxic extracellular vesicles, which lead to apoptosis specifically in tumor cells while leaving healthy epithelial cells intact. We exploit these findings to develop an effective therapeutic approach, based on transfer of T cells pre-treated with taxanes ex vivo, thereby avoiding toxicity of systemic treatment. Our study reveals a different in vivo mode of action of one of the most commonly used chemotherapies, and opens avenues to harness T cell-dependent anti-tumor effects of taxanes while avoiding systemic toxicity
    corecore