103 research outputs found
Diversity and ecology of wood-inhabiting aphyllophoroid basidiomycetes on fallen woody debris in various forest types in Switzerland
This study on the ecology of aphyllophoroid wood-inhabiting basidiomycetes in Switzerland showed a remarkably high species diversity of both saprophytes and mycorrhiza-forming species. Phlebiella vaga, a saprophytic species, and Amphinema byssoides, a mycorrhizal symbiont, were the two most abundant species. A total of 3339 samples of fungal fruitbodies in 86 plots distributed all over Switzerland belonged to 238 species. The five main biogeographical regions of Switzerland showed different pattern of fungal species richness: while the Plateau at lower altitudes was found to be rather rich, the Northern Alps and Central Alps, with the highest amount of forests cover, yielded less species. Although the Southern Alps exhibited the lowest species richness, this region harbours a specific species set. These findings encourage for further studies in Central Europe, where many species of aphyllophoroid wood-inhabiting basidiomycetes seem to be highly under-investigate
Influence of Forest Management on the Species Richness and Composition of Wood-inhabiting Basidiomycetes in Swiss Forests
In order to investigate the diversity of wood-inhabiting aphyllophoroid basidiomycetes in Swiss forests, 86 plots of 50m 2 were established. They harboured a total of 3339 samples of woody debris, classified according to three categories (coarse, fine, and very fine woody debris), yielding 238 species of wood-inhabiting fungi. The selected sites cover the main forest types of Switzerland and various degrees of management intensity. A multiple linear regression analysis showed that substrate variation, i.e. differences in the quality of dead wood, including volume, age, degree of decomposition and host tree species, are the most important factors influencing diversity of wood-inhabiting fungi. In addition, a Principle Coordinate Analysis highlighted differences in the fungal communities in the different forest types. The greatest fungal species richness is found on thermophilic deciduous tree and woody shrub species. Fine and very fine woody debris, even present in intensively managed forests, often serve as important refuges for many species. Forests with a recent management intervention were found to be either species poor or species rich. Possible reasons for these differences may lay in forest size and landscape fragmentation, the distance to the nearest species pool or microclimatic factors. In Switzerland intensively managed forests harbour significantly less wood-inhabiting, aphyllophoroid fungi than non-managed or extensively managed forests. This is the case in both deciduous forests and in conifer forests. However, occasionally intensively managed forest will also harbour rare and endangered specie
Sclerotinia cirsii-spinosissimi, a new species from the Alps
Beatrice Senn-Irlet, Martina Peter (2016): Sclerotinia cirsii-spinosissimi, a new species from the Alps. Ascomycete.org 8 (5): 235-240, DOI: 10.5281/zenodo.104018
Ecological determinants of fungal diversity on dead wood in European forests
International audienceThe fine-scale ecological determinants for wood-inhabiting aphyllophoroid basidiomycetes were investigated with statistical analyses of the occurrence of fruit bodies on woody debris collected in Switzerland and Ukraine. Three substrate descriptors were considered: diameter, degree of decomposition and host tree species. By means of Multiple Regression Trees, thresholds in the response of fungal communities to these local environmental descriptors were detected. Three classes for diameter, as well as for degree of decomposition were thus delimited. They revealed the importance of very small sizes, which were not reported in the literature so far: the relevant diameter class limits were about 0.72 cm and 1.35 cm. Within the host tree species, a clear distinction between coniferous and broadleaf species was found. The next splits followed rather climatic determinants of tree distribution than taxonomical entities such as families or genera. The fidelity of the 59 fungal species to diameter classes, decomposition classes and host tree species was measured by the Dufrêne-Legendre index and only significant responses after permutation tests were retained. This brought new insights on the ecology of many wood-inhabiting aphyllophoroid basidiomycetes. Redundancy Analysis was applied to investigate the response of fungal species to diameter and degree of decomposition of woody debris from the most common host tree species, Fagus sylvatica. This direct gradient analysis made it possible to reconstruct the succession of fungal species along the wood decomposition process
A Fungal Perspective on Conservation Biology
Hitherto fungi have rarely been considered in conservation biology, but this is changing as the field moves from addressing single species issues to an integrative ecosystem-based approach. The current emphasis on biodiversity as a provider of ecosystem services throws the spotlight on the vast diversity of fungi, their crucial roles in terrestrial ecosystems, and the benefits of considering fungi in concert with animals and plants. We reviewed the role of fungi in ecosystems and composed an overview of the current state of conservation of fungi. There are 5 areas in which fungi can be readily integrated into conservation: as providers of habitats and processes important for other organisms; as indicators of desired or undesired trends in ecosystem functioning; as indicators of habitats of conservation value; as providers of powerful links between human societies and the natural world because of their value as food, medicine, and biotechnological tools; and as sources of novel tools and approaches for conservation of megadiverse organism groups. We hope conservation professionals will value the potential of fungi, engage mycologists in their work, and appreciate the crucial role of fungi in nature
Congruency in fungal phenology patterns across dataset sources and scales
As citizen science and digitization projects bring greater and larger datasets to the scientific realm, we must address the comparability of results across varying sources and spatial scales. Independently assembled fungal fruit body datasets from Switzerland and the UK were available at large, national-scales and more intensively surveyed, local-scales. Phenology responses of fungi between these datasets at different scales (national, intermediate and local) resembled one another. Consistently with time, the fruiting season initiated earlier and extended later. Phenology better correlated across data sources and scales in the UK, which contain less landscape and environmental heterogeneity than Switzerland. Species-specific responses in seasonality varied more than overall responses, but generally fruiting start dates were later for most Swiss species compared with UK species, while end dates were later for both. The coherency of these results, across the data sources, supports the use of presence-only data obtained by multiple recorders, and even across heterogeneous landscapes, for global change phenology research
Ecology of Alpine Macrofungi - Combining Historical with Recent Data
Historical datasets of living communities are important because they can be used to document creeping shifts in species compositions. Such a historical data set exists for alpine fungi. From 1941 to 1953, the Swiss geologist Jules Favre visited yearly the region of the Swiss National Park and recorded the occurring fruiting bodies of fungi >1 mm (so-called “macrofungi”) in the alpine zone. Favre can be regarded as one of the pioneers of alpine fungal ecology not least because he noted location, elevation, geology, and associated plants during his numerous excursions. However, some relevant information is only available in his unpublished field-book. Overall, Favre listed 204 fungal species in 26 sampling sites, with 46 species being previously unknown. The analysis of his data revealed that the macrofungi recorded belong to two major ecological groups, either they are symbiotrophs and live in ectomycorrhizal associations with alpine plant hosts, or they are saprotrophs and decompose plant litter and soil organic matter. The most frequent fungi were members of Inocybe and Cortinarius, which form ectomycorrhizas with Dryas octopetala or the dwarf alpine Salix species. The scope of the present study was to combine Favre’s historical dataset with more recent data, either with the “SwissFungi” database or with data from major studies of the French and German Alps, and with the data from novel high-throughput DNA sequencing techniques of soils from the Swiss Alps. Results of the latter application revealed, that problems associated with these new techniques are manifold and species determination remains often unclear. At this point, the fungal taxa collected by Favre and deposited as exsiccata at the “Conservatoire et Jardin Botaniques de la Ville de Genève” could be used as a reference sequence dataset for alpine fungal studies. In conclusion, it can be postulated that new improved databases are urgently necessary for the near future, particularly, with regard to investigating fungal communities from alpine regions using new techniques
A fungal perspective on conservation biology
Abstract: Hitherto fungi have rarely been considered in conservation biology, but this is changing as the field moves from addressing single species issues to an integrative ecosystem-based approach. The current emphasis on biodiversity as a provider of ecosystem services throws the spotlight on the vast diversity of fung
Open-source data reveal how collections?based fungal diversity is sensitive to global change
Premise of the Study: Fungal diversity (richness) trends at large scales are in urgent need of investigation, especially through novel situations that combine long-term observational with environmental and remotely sensed open-source data. Methods: We modeled fungal richness, with collections-based records of saprotrophic (decaying) and ectomycorrhizal (plant mutualistic) fungi, using an array of environmental variables across geographical gradients from northern to central Europe. Temporal differences in covariables granted insight into the impacts of the shorter- versus longer-term environment on fungal richness. Results: Fungal richness varied significantly across different land-use types, with highest richness in forests and lowest in urban areas. Latitudinal trends supported a unimodal pattern in diversity across Europe. Temperature, both annual mean and range, was positively correlated with richness, indicating the importance of seasonality in increasing richness amounts. Precipitation seasonality notably affected saprotrophic fungal diversity (a unimodal relationship), as did daily precipitation of the collection day (negatively correlated). Ectomycorrhizal fungal richness differed from that of saprotrophs by being positively associated with tree species richness. Discussion: Our results demonstrate that fungal richness is strongly correlated with land use and climate conditions, especially concerning seasonality, and that ongoing global change processes will affect fungal richness patterns at large scales.</p
Conversion of peat swamp forest to oil palm cultivation reduces the diversity and abundance of macrofungi
Deforestation of tropical peat swamp forests is rapidly taking place across Southeast Asia to make way for agricultural expansion. Within forest ecosystems, macrofungi play a vital role, including wood decomposition and nutrient cycles. To reveal the effects of deforestation and land cover conversion on macrofungi in Southeast Asian tropical forests we assessed the relationship between environmental variables such as air temperature, relative air humidity, soil pH, soil moisture, canopy cover, canopy closure, habitat type (i.e., peat swamp forest, large-scale plantation, monoculture smallholding, and polyculture smallholding) and available substrata with macrofungal species richness and abundance. We sample macrofungi across four habitats on Peninsula Malaysia including peat swamp forest, large-scale plantations, monoculture smallholding and polyculture smallholding. We found that substrate richness had a positive effect on macrofungal morphospecies richness, while soil pH and air temperature had a negative effect. For macrofungal abundance, canopy closure and soil moisture had negative effects, whereas substrate richness and relative air humidity had positive effects. Our data showed considerable variation in functional group responses to environmental variables. The abundance of wood-inhabiting fungi was driven primarily by substrate richness, while relative air humidity, soil moisture, and habitat type play minor roles. The abundance of terricolous saprotrophic fungi was determined principally by habitat type, substrate richness, and relative air humidity. Macrofungal community structure was mainly influenced by substrate richness, followed by microclimates and soil characteristics. Our results can provides critical ecological data to support conservation stakeholders conserve macrofungi in natural and agricultural peatlands. Our study suggests that the expansion of oil palm monocultures, to the detriment of peat swamp forests, is likely to have negative effects on macrofungal biodiversity and further agricultural expansion should be prevented
- …