36 research outputs found

    GM1 ganglioside in Parkinson\u27s disease: Pilot study of effects on dopamine transporter binding.

    Get PDF
    OBJECTIVE: GM1 ganglioside has been suggested as a treatment for Parkinson\u27s disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. METHODS: Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD [1]: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 min following injection of [(11)C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. RESULTS: Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. INTERPRETATION: Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects

    Fewer non‐native insects in freshwater than in terrestrial habitats across continents

    Full text link
    Aim Biological invasions are a major threat to biodiversity in aquatic and terrestrial habitats. Insects represent an important group of species in freshwater and terrestrial habitats, and they constitute a large proportion of non-native species. However, while many non-native insects are known from terrestrial ecosystems, they appear to be less represented in freshwater habitats. Comparisons between freshwater and terrestrial habitats of invader richness relative to native species richness are scarce, which hinders syntheses of invasion processes. Here, we used data from three regions on different continents to determine whether non-native insects are indeed under-represented in freshwater compared with terrestrial assemblages. Location Europe, North America, New Zealand. Methods We compiled a comprehensive inventory of native and non-native insect species established in freshwater and terrestrial habitats of the three study regions. We then contrasted the richness of non-native and native species among freshwater and terrestrial insects for all insect orders in each region. Using binomial regression, we analysed the proportions of non-native species in freshwater and terrestrial habitats. Marine insect species were excluded from our analysis, and insects in low-salinity brackish water were considered as freshwater insects. Results In most insect orders living in freshwater, non-native species were under-represented, while they were over-represented in a number of terrestrial orders. This pattern occurred in purely aquatic orders and in orders with both freshwater and terrestrial species. Overall, the proportion of non-native species was significantly lower in freshwater than in terrestrial species. Main conclusions Despite the numerical and ecological importance of insects among all non-native species, non-native insect species are surprisingly rare in freshwater habitats. This is consistent across the three investigated regions. We review hypotheses concerning species traits and invasion pathways that are most likely to explain these patterns. Our findings contribute to a growing appreciation of drivers and impacts of biological invasions

    Fewer non-native insects in freshwater than in terrestrial habitats across continents

    Get PDF
    Aim: Biological invasions are a major threat to biodiversity in aquatic and terrestrial habitats. Insects represent an important group of species in freshwater and terrestrial habitats, and they constitute a large proportion of non-native species. However, while many non-native insects are known from terrestrial ecosystems, they appear to be less represented in freshwater habitats. Comparisons between freshwater and terrestrial habitats of invader richness relative to native species richness are scarce, which hinders syntheses of invasion processes. Here, we used data from three regions on different continents to determine whether non-native insects are indeed under-represented in freshwater compared with terrestrial assemblages. Location: Europe, North America, New Zealand. Methods: We compiled a comprehensive inventory of native and non-native insect species established in freshwater and terrestrial habitats of the three study regions. We then contrasted the richness of non-native and native species among freshwater and terrestrial insects for all insect orders in each region. Using binomial regression, we analysed the proportions of non-native species in freshwater and terrestrial habitats. Marine insect species were excluded from our analysis, and insects in low-salinity brackish water were considered as freshwater insects. Results: In most insect orders living in freshwater, non-native species were under-represented, while they were over-represented in a number of terrestrial orders. This pattern occurred in purely aquatic orders and in orders with both freshwater and terrestrial species. Overall, the proportion of non-native species was significantly lower in freshwater than in terrestrial species. Main conclusions: Despite the numerical and ecological importance of insects among all non-native species, non-native insect species are surprisingly rare in freshwater habitats. This is consistent across the three investigated regions. We review hypotheses concerning species traits and invasion pathways that are most likely to explain these patterns. Our findings contribute to a growing appreciation of drivers and impacts of biological invasions

    Microanatomy and ultrastructure of kidney interstitial cells and nephron in brown trout (Salmo trutta Linnaeus, 1758) at different stages of the life cycle

    No full text
    The study focuses on the microanatomy and ultrastructural changes in the trunk kidney interstitium cells and nephrons in parr, smolt and spawning brown trout Salmo trutta Linnaeus, 1758 sampled in Luga River and Solka River, the tributaries of the Baltic Sea. Regardless of the type of cells or their structure, there were changes in their areas and the number and structure of organelles responsible for the transport, synthetic and energetic function of cells. Our data on the morphology of the nephron combined with data on its physiology suggest a fundamental change in kidney function during the parr-smolt transformation before migration; this could be a preadaptation for a successful life in saltwater where urine output is sharply reduced. Thus, detected structural features of the trunk kidney in brown trout S. trutta are cytological markers of the migration process. The numbers of lymphocytes, neutrophils and eosinophils with segmented nuclei increased from parr to smolts and then to spawners; only monotypic specific granules in neutrophils were found in smolts and spawners. Cells with radially arranged vesicles were described for the first time in brown trout S. trutta renal interstitium. Their origin has not yet been established. The shape of these cells changed from spherical to trihedral during fish maturation. All the above ultrastructural changes of renal interstitium cells could be considered cytological markers of cell maturity.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    A unified classification of alien species based on the magnitude of their environmental impacts

    Get PDF
    Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact-ranging from Minimal to Massive-with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions. © 2014 Blackburn et al

    Fewer non-native insects in freshwater than in terrestrial habitats across continents

    No full text
    Aim Biological invasions are a major threat to biodiversity in aquatic and terrestrial habitats. Insects represent an important group of species in freshwater and terrestrial habitats, and they constitute a large proportion of non-native species. However, while many non-native insects are known from terrestrial ecosystems, they appear to be less represented in freshwater habitats. Comparisons between freshwater and terrestrial habitats of invader richness relative to native species richness are scarce, which hinders syntheses of invasion processes. Here, we used data from three regions on different continents to determine whether non-native insects are indeed under-represented in freshwater compared with terrestrial assemblages. Location Europe, North America, New Zealand. Methods We compiled a comprehensive inventory of native and non-native insect species established in freshwater and terrestrial habitats of the three study regions. We then contrasted the richness of non-native and native species among freshwater and terrestrial insects for all insect orders in each region. Using binomial regression, we analysed the proportions of non-native species in freshwater and terrestrial habitats. Marine insect species were excluded from our analysis, and insects in low-salinity brackish water were considered as freshwater insects. Results In most insect orders living in freshwater, non-native species were under-represented, while they were over-represented in a number of terrestrial orders. This pattern occurred in purely aquatic orders and in orders with both freshwater and terrestrial species. Overall, the proportion of non-native species was significantly lower in freshwater than in terrestrial species. Main conclusions Despite the numerical and ecological importance of insects among all non-native species, non-native insect species are surprisingly rare in freshwater habitats. This is consistent across the three investigated regions. We review hypotheses concerning species traits and invasion pathways that are most likely to explain these patterns. Our findings contribute to a growing appreciation of drivers and impacts of biological invasions.ISSN:1366-9516ISSN:1472-464

    Fewer non-native insects in freshwater than in terrestrial habitats across continents

    No full text
    Aim Biological invasions are a major threat to biodiversity in aquatic and terrestrial habitats. Insects represent an important group of species in freshwater and terrestrial habitats, and they constitute a large proportion of non-native species. However, while many non-native insects are known from terrestrial ecosystems, they appear to be less represented in freshwater habitats. Comparisons between freshwater and terrestrial habitats of invader richness relative to native species richness are scarce, which hinders syntheses of invasion processes. Here, we used data from three regions on different continents to determine whether non-native insects are indeed under-represented in freshwater compared with terrestrial assemblages. Location Europe, North America, New Zealand. Methods We compiled a comprehensive inventory of native and non-native insect species established in freshwater and terrestrial habitats of the three study regions. We then contrasted the richness of non-native and native species among freshwater and terrestrial insects for all insect orders in each region. Using binomial regression, we analysed the proportions of non-native species in freshwater and terrestrial habitats. Marine insect species were excluded from our analysis, and insects in low-salinity brackish water were considered as freshwater insects. Results In most insect orders living in freshwater, non-native species were under-represented, while they were over-represented in a number of terrestrial orders. This pattern occurred in purely aquatic orders and in orders with both freshwater and terrestrial species. Overall, the proportion of non-native species was significantly lower in freshwater than in terrestrial species. Main conclusions Despite the numerical and ecological importance of insects among all non-native species, non-native insect species are surprisingly rare in freshwater habitats. This is consistent across the three investigated regions. We review hypotheses concerning species traits and invasion pathways that are most likely to explain these patterns. Our findings contribute to a growing appreciation of drivers and impacts of biological invasions

    Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment

    No full text
    The limited number of known low-band-gap photoelectrocatalytic materials poses a significant challenge for the generation of chemical fuels from sunlight. Using high-throughput ab initio theory with experiments in an integrated workflow, we find eight ternary vanadate oxide photoanodes in the target band-gap range (1.2–2.8 eV). Detailed analysis of these vanadate compounds reveals the key role of VO_4 structural motifs and electronic band-edge character in efficient photoanodes, initiating a genome for such materials and paving the way for a broadly applicable high-throughput-discovery and materials-by-design feedback loop. Considerably expanding the number of known photoelectrocatalysts for water oxidation, our study establishes ternary metal vanadates as a prolific class of photoanode materials for generation of chemical fuels from sunlight and demonstrates our high-throughput theory–experiment pipeline as a prolific approach to materials discovery
    corecore