25 research outputs found

    Modelling the spectral energy distribution of galaxies: introducing the artificial neural network

    Get PDF
    The spectral energy distribution (SED) of galaxies is a complex function of the star formation history and geometrical arrangement of stars and gas in galaxies. The computation of the radiative transfer of stellar radiation through the dust distribution is time-consuming. This aspect becomes unacceptable in particular when dealing with the predictions by semi-analytical galaxy formation models populating cosmological volumes, to be then compared with multi-wavelength surveys. Mainly for this aim, we have implemented an artificial neural network (ANN) algorithm into the spectro-photometric and radiative transfer code GRASIL in order to compute the SED of galaxies in a short computing time. This allows to avoid the adoption of empirical templates that may have nothing to do with the mock galaxies output by models. The ANN has been implemented to compute the dust emission spectrum (the bottleneck of the computation), and separately for the star-forming molecular clouds (MC) and the diffuse dust (due to their different properties and dependencies). We have defined the input neurons effectively determining their emission, which means this implementation has a general applicability and is not linked to a particular galaxy formation model. We have trained the net for the disc and spherical geometries, and tested its performance to reproduce the SED of disc and starburst galaxies, as well as for a semi-analytical model for spheroidal galaxies. We have checked that for this model both the SEDs and the galaxy counts in the Herschel bands obtained with the ANN approximation are almost superimposed to the same quantities obtained with the full GRASIL. We conclude that this method appears robust and advantageous, and will present the application to a more complex SAM in another paper

    Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems

    Get PDF
    PEGylated and non-PEGylated ORMOSIL nanoparticles prepared by microemulsion condensation of vinyltriethoxy-silane (VTES) were investigated in detail for their micro-structure and ability to deliver photoactive agents. With respect to pure silica nanoparticles, organic modification substantially changes the microstructure and the surface properties. This in turn leads to a modulation of both the photophysical properties of embedded photosensitizers and the interaction of the nanoparticles with biological entities such as serum proteins. The flexibility of the synthetic procedure allows the rapid preparation and screening of multifunctional nanosystems for photodynamic therapy (PDT). Selective targeting of model cancer cells was tested by using folate, an integrin specific RGD peptide and anti-EGFR antibodies. Data suggest the interference of the stealth-conferring layer (PEG) with small targeting agents, but not with bulky antibodies. Moreover, we showed that selective photokilling of tumour cells may be limited even in the case of efficient targeting because of intrinsic transport limitations of active cellular uptake mechanisms or suboptimum localization

    (704) Interamnia: a transitional object between a dwarf planet and a typical irregular-shaped minor body

    Get PDF
    Context. With an estimated diameter in the 320–350 km range, (704) Interamnia is the fifth largest main belt asteroid and one of the few bodies that fills the gap in size between the four largest bodies with D > 400 km (Ceres, Vesta, Pallas and Hygiea) and the numerous smaller bodies with diameter ≤200 km. However, despite its large size, little is known about the shape and spin state of Interamnia and, therefore, about its bulk composition and past collisional evolution. Aims. We aimed to test at what size and mass the shape of a small body departs from a nearly ellipsoidal equilibrium shape (as observed in the case of the four largest asteroids) to an irregular shape as routinely observed in the case of smaller (D ≤ 200 km) bodies. Methods. We observed Interamnia as part of our ESO VLT/SPHERE large program (ID: 199.C-0074) at thirteen different epochs. In addition, several new optical lightcurves were recorded. These data, along with stellar occultation data from the literature, were fed to the All-Data Asteroid Modeling algorithm to reconstruct the 3D-shape model of Interamnia and to determine its spin state. Results. Interamnia’s volume-equivalent diameter of 332 ± 6 km implies a bulk density of ρ = 1.98 ± 0.68 g cm−3, which suggests that Interamnia – like Ceres and Hygiea – contains a high fraction of water ice, consistent with the paucity of apparent craters. Our observations reveal a shape that can be well approximated by an ellipsoid, and that is compatible with a fluid hydrostatic equilibrium at the 2σ level. Conclusions. The rather regular shape of Interamnia implies that the size and mass limit, under which the shapes of minor bodies with a high amount of water ice in the subsurface become irregular, has to be searched among smaller (D ≤ 300 km) less massive (m ≤ 3 × 1019 kg) bodies

    Modeling the migration of chemicals from food contact materials to food: The MERLIN-expo/VERMEER toolbox.

    No full text
    Evaluating the migration of chemicals from food contact materials (FCM) into food is a key step in the safety assessment of such materials. In this paper, a simple mechanistic model describing the migration of chemicals from FCM to food was combined with quantitative property-property relationships (QPPRs) for the prediction of diffusion coefficients and FCM-Food partition coefficients. The aim of the present study was to evaluate the performance of these operational models in the prediction of a chemical&#8217;s concentration in food in contact with a plastic monolayer FCM. A comparison to experimental migration values reported in literature was conducted. Deterministic simulations showed a good match between predicted and experimental values. The tested models can be used to provide insights in the amount and the type of toxicological data that are needed for the safety evaluation of the FCM substance. Uncertainty in QPPRs used for describing the processes of both diffusion in FCM and partition at the FCM-Food interface was included in the analysis. Combining uncertainty in QPPR predictions, it was shown that the third quartile (75th percentile) derived from probabilistic calculations can be used as a conservative value in the prediction of chemical concentration in food, with reasonable safety&nbsp;factors.</p

    Modeling the migration of chemicals from food contact materials to food: The MERLIN-expo/VERMEER toolbox

    No full text
    Evaluating the migration of chemicals from food contact materials (FCM) into food is a key step in the safety assessment of such materials. In this paper, a simple mechanistic model describing the migration of chemicals from FCM to food was combined with quantitative property-property relationships (QPPRs) for the prediction of diffusion coefficients and FCM-Food partition coefficients. The aim of the present study was to evaluate the performance of these operational models in the prediction of a chemical&#8217;s concentration in food in contact with a plastic monolayer FCM. A comparison to experimental migration values reported in literature was conducted. Deterministic simulations showed a good match between predicted and experimental values. The tested models can be used to provide insights in the amount and the type of toxicological data that are needed for the safety evaluation of the FCM substance. Uncertainty in QPPRs used for describing the processes of both diffusion in FCM and partition at the FCM-Food interface was included in the analysis. Combining uncertainty in QPPR predictions, it was shown that the third quartile (75th percentile) derived from probabilistic calculations can be used as a conservative value in the prediction of chemical concentration in food, with reasonable safety&nbsp;factors.</p

    Variations of the corona HDL:albumin ratio determine distinct effects of amorphous SiO2 nanoparticles on monocytes and macrophages in serum.

    No full text
    Aim: We investigated monocyte and macrophage death and cytokine production induced by amorphous silica nanoparticles (SiO2-NPs) to clarify the role of defined serum corona proteins. Materials & methods: The cytotoxic proinflammatory effects of SiO2-NPs on human monocytes and macrophages were characterized in no serum, in fetal calf serum and in the presence of purified corona proteins. Results: In no serum and in fetal calf serum above approximately 75 \ub5g/ml, SiO2-NPs lysed monocytes and macrophages by plasma membrane damage (necrosis). In fetal calf serum below approximately 75 \ub5g/ml, SiO2-NPs triggered an endolysosomal acidification and caspase-1-dependent monocyte death (pyroptosis). The corona high-density lipoproteins:albumin ratio accounted for the features of the SiO2-NPs in serum. Discussion: Corona high-density lipoproteins are a major determinant of the differential cytotoxic action of SiO2-NPs on monocytes and macrophage

    Modeling the migration of chemicals from food contact materials to food : the MERLIN-expo/VERMEER toolbox

    No full text
    Evaluating the migration of chemicals from food contact materials (FCM) into food is a key step in the safety assessment of such materials. In this paper, a simple mechanistic model describing the migration of chemicals from FCM to food was combined with quantitative property-property relationships (QPPRs) for the prediction of diffusion coefficients and FCM-Food partition coefficients. The aim of the present study was to evaluate the performance of these operational models in the prediction of a chemical&#8217;s concentration in food in contact with a plastic monolayer FCM. A comparison to experimental migration values reported in literature was conducted. Deterministic simulations showed a good match between predicted and experimental values. The tested models can be used to provide insights in the amount and the type of toxicological data that are needed for the safety evaluation of the FCM substance. Uncertainty in QPPRs used for describing the processes of both diffusion in FCM and partition at the FCM-Food interface was included in the analysis. Combining uncertainty in QPPR predictions, it was shown that the third quartile (75th percentile) derived from probabilistic calculations can be used as a conservative value in the prediction of chemical concentration in food, with reasonable safety&nbsp;factors.</p
    corecore