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ABSTRACT
The spectral energy distribution (SED) of galaxies is a complex function of the star formation
history and geometrical arrangement of stars and gas in galaxies. The computation of the
radiative transfer of stellar radiation through the dust distribution is time-consuming. This
aspect becomes unacceptable in particular when dealing with the predictions by semi-analytical
galaxy formation models populating cosmological volumes, to be then compared with multi-
wavelength surveys. Mainly for this aim, we have implemented an artificial neural network
(ANN) algorithm into the spectro-photometric and radiative transfer code GRASIL in order to
compute the SED of galaxies in a short computing time. This allows to avoid the adoption of
empirical templates that may have nothing to do with the mock galaxies output by models.
The ANN has been implemented to compute the dust emission spectrum (the bottleneck
of the computation), and separately for the star-forming molecular clouds (MC) and the
diffuse dust (due to their different properties and dependencies). We have defined the input
neurons effectively determining their emission, which means this implementation has a general
applicability and is not linked to a particular galaxy formation model. We have trained the
net for the disc and spherical geometries, and tested its performance to reproduce the SED
of disc and starburst galaxies, as well as for a semi-analytical model for spheroidal galaxies.
We have checked that for this model both the SEDs and the galaxy counts in the Herschel
bands obtained with the ANN approximation are almost superimposed to the same quantities
obtained with the full GRASIL. We conclude that this method appears robust and advantageous,
and will present the application to a more complex SAM in another paper.
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1 IN T RO D U C T I O N

The spectral energy distribution (SED) of a galaxy contains a wealth
of information, and through its study much can be learned about
the galaxy’s properties, including the stellar and gas content of
the galaxy, the age and abundances of the stellar populations, the
chemistry and physical state of the interstellar medium (ISM), and
the star formation rate (SFR) and history. It is therefore the most
direct probe to study galaxy formation and evolution, both through
direct observations and also by theoretical modelling.

�E-mail: silva@oats.inaf.it

Different spectral ranges tend to be dominated by different spe-
cific emission sources or radiative processes which affect the light
as it travels through the ISM. Therefore, by analysing and pre-
dicting the whole spectral range one can hope to deconvolve and
interpret all the different information contained in the SED in terms
of the SFR history and galaxy evolution in general. Stellar sources
mainly emit in the UV/optical to NIR spectral range, and the SED
in this wavelength region is therefore heavily influenced by the star
formation history of the galaxy and as a result can be used to study
the specific mixture of ages, metallicity and mass distribution of the
stellar populations. UV photons ionize and excite the gas, producing
H II regions with emission lines that are probes of the SFR and the
chemistry, energetics and physical state of the ISM where they are
produced. Atomic and molecular lines are present from the X-ray to
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the radio range originating from electronic or rotational/vibrational
transitions (e.g. Stasinska 2007). The X-ray range probes mainly
the emission from hot plasma and from X-ray binary stars (e.g.
Fabbiano 2006). The radio continuum emission is mainly produced
by free–free emission from ionized nebulae and synchrotron radia-
tion by energetic electrons accelerated in supernova remnant shocks
and moving in the galactic magnetic field (e.g. Condon 1992). The
SED from a few µm to the sub-mm (the IR region) is dominated by
the interaction of dust grains with stellar radiation. Dust in galaxies,
although only a small fraction of the mass of gas (∼0.01 in our
Galaxy), is a fundamental ingredient prevalent in many environ-
ments, such as circumstellar envelopes, supernova remnants, star-
forming regions and diffuse clouds. Dust grains absorb and scatter
short wavelength stellar radiation (λ � 1 µm) with high efficiency
and thermally emit the absorbed energy in the IR. In addition to its
effect on the SED, dust grains also affect many important chemical
and physical processes, for instance by acting as a catalyst for the
formation of H2 molecules, by shielding dense and cold regions
from photodissociating UV photons allowing gravitational collapse
and star formation, by driving mass loss in evolved stars and by
depleting heavy elements from the gas phase (e.g. Mathis 1990;
Dorschner & Henning 1995; Draine 2003).

The modelling of the entire SEDs of galaxies is therefore very
complex and full of uncertainties. Because of this, several different
approaches have been proposed, depending also on the purpose of
the applications. Some works (e.g. Devriendt, Guiderdoni & Sadat
1999; Chary & Elbaz 2001; Dale et al. 2001; Dale & Helou 2002;
Galliano et al. 2003; Lagache, Dole & Puget 2003; da Cunha,
Charlot & Elbaz 2008) have proposed semi-empirical treatments of
the SEDs. The aim of these works is in general to interpret very large
samples of data, requiring fast computing times making use of ob-
servationally or physically motivated SEDs. Other works are based
on theoretical computations in order to have a more general appli-
cability in terms of interpretative and predictive power. Within this
approach different components and levels of complexity have been
considered. Several papers deal with the radiative transfer (RT) in
spherical geometries, mainly aimed at modelling starburst galaxies
(e.g. Rowan-Robinson 1980; Rowan-Robinson & Crawford 1989;
Efstathiou, Rowan-Robinson & Siebenmorgen 2000; Efstathiou &
Rowan-Robinson 2003; Takagi, Arimoto & Hanami 2003a; Takagi,
Vansevicius & Arimoto 2003b; Siebenmorgen & Krugel 2007). In
the series of papers by Dopita et al. (2005, 2006a,b) and Groves
et al. (2008) a sophisticated modelling of the SED of starburst
galaxies has been presented, which includes the evolution of stellar
populations, the dynamical evolution of H II regions and continuum
and line emission. The series of papers by Popescu et al. (2000),
Misiriotis et al. (2001), Tuffs et al. (2004), Mollenhoff, Popescu &
Tuffs (2006) is focused on a detailed modelling and interpretation
of the SED of spiral galaxies, from the UV to sub-mm, to provide
constraints for several quantities such as optical depths, attenua-
tions, scale radii for the distribution of stars and dust. The most
general treatments of RT, capable of dealing with arbitrary geomet-
rical configurations, are based on Monte Carlo codes (e.g. Bianchi,
Ferrara & Giovanardi 1996; Gordon et al. 2001; Baes et al. 2003;
Chakrabarti et al. 2008; Li et al. 2008). Among these, the code DIRTY

(Gordon et al. 2001; Misselt et al. 2001) includes extinction and dust
emission and clumping of dust; SUNRISE (Jonsson 2006; Jonsson &
Primack 2010; Jonsson, Groves & Cox 2010) computes extinction
and dust thermal emission and has been applied to hydrodynamical
simulations of spirals including as sub-grid the H II region models
by Groves et al. (2008); the code TRADING (Bianchi 2007, 2008) in-
cludes both extinction and dust thermal emission, the clumping of

gas and stars, and has been applied to study images of spirals. The
drawback of Monte Carlo codes is the very long computing times
they require, which becomes prohibitive when, for instance, applied
to galaxy formation models in cosmological volumes, where typi-
cally mock catalogues of many thousands or tens of thousands of
galaxies are necessary to compare with observational constraints,
for example multi-wavelength luminosity functions (LF) and galaxy
counts.

For a general purpose modelling of galaxy SEDs we developed
the code GRASIL (Silva et al. 1998, hereafter S98; Silva 1999, here-
after S99; Granato et al. 2000, hereafter G00; Silva et al. 2001;
Bressan, Silva & Granato 2002; Panuzzo et al. 2003; Vega et al.
2005; Schurer et al. 2009). Our main aims were to construct a rel-
atively realistic and flexible multi-wavelength model, which could
calculate a galactic SED in a reasonably short computing time, to
be applied both to interpret observations and to make predictions
in conjunction with galaxy formation models. These requirements
heavily influenced our general choices, promoting the decision to
include a realistic bulge plus disc geometry, the radiative effects of
different dusty environments and the clumping of stars and dust, but
to avoid Monte Carlo calculations and to have some degree of geo-
metrical (axial and equatorial) symmetry. With these ingredients the
model has been successfully applied in many contexts (e.g. Granato
et al. 2004; Baugh et al. 2005; Silva et al. 2005; Fontanot et al.
2007; Iglesias-Paramo et al. 2007; Panuzzo et al. 2007a,b; Galliano
et al. 2008; Lacey et al. 2008; Vega et al. 2008; Fontanot et al. 2009;
Michalowski et al. 2009; Schurer et al. 2009; Lacey et al. 2010;
Michalowski, Watson & Hjorth 2010; Santini et al. 2010).

The study of galaxy formation and evolution has been receiving
increasing interest, both observationally and theoretically. Observa-
tional programs covering the whole wavelength range are system-
atically and directly unveiling galaxy populations at all redshifts,
whose main properties depend on the selection criteria. The detec-
tion of high-redshift galaxy populations is particularly important
to track the process of galaxy formation as a function of the cos-
mic epoch. Three main spectral ranges are used, each detecting
galaxies with different masses, levels of star formation and at dif-
ferent evolutionary stages. IR and sub-mm data collected initially
by IRAS (Neugebauer et al. 1984; Soifer, Neugebauer & Houck
1987), then mainly by COBE (Puget et al. 1996; Fixsen et al.
1998; Hauser & Dwek 2001), ISO (Kessler et al. 1996; Genzel &
Cesarsky 2000), SCUBA (Smail, Ivison & Blain 1997; Hughes et al.
1998; Holland et al. 1999; Smail et al. 2002) and more recently by
Spitzer (Werner et al. 2004; Soifer, Helou & Werner 2008) have
shown that at least half of the energy emitted by stars over the
history of the Universe has been reprocessed by dust in the IR,
with a high-z star formation activity much stronger than locally,
as witnessed by the fast evolution of the population of IR-bright
galaxies discovered with the mid-IR to mm cosmological surveys
(see e.g. the review by Lagache, Puget & Dole 2005). At shorter
wavelengths, large populations of high-z star-forming galaxies, the
Lyman-break galaxies (LBGs), have been detected in the optical
bands from their stellar emission in the rest-frame UV, exploit-
ing the spectral break around 912 Å produced by absorption by
intervening neutral hydrogen (e.g. Giavalisco 2002). The dust ex-
tinction corrections required to provide an estimate for their SFR
(∼10 to 100 M� yr−1) are probably very large (a factor of ∼3–10;
e.g. Meurer, Heckman & Calzetti 1999), but remain very uncertain
since at least part of the SFR could be optically totally hidden.
Deep near-IR surveys and estimates of stellar mass functions have
revealed a substantial population of already massive, and in many
cases already evolved, galaxies at z > 1 (e.g. Drory et al. 2003;
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Cimatti et al. 2004; Fontana et al. 2004; Bundy, Ellis & Conselice
2005; Drory et al. 2005; Saracco et al. 2005; Caputi et al. 2006).
These observations reveal that the most massive galaxies tend to be
the oldest at all the sampled redshifts, i.e. the high-luminosity/high-
mass tails of the luminosity/mass functions are found to evolve only
weakly since z ∼ 5 to now (e.g. Cimatti, Daddi & Renzini 2006).

From the theoretical point of view, the modelling of galaxy for-
mation and evolution in a cosmological context involves many pro-
cesses at very different scales, from Mpc to a pc and under. The
widest range of observed galaxy properties has been analysed us-
ing the so-called semi-analytic models (SAM; White & Rees 1978;
Lacey & Silk 1991; White & Frenk 1991), that consist in calculat-
ing the evolution of the baryon component using simple analytical
approximations, while the evolution of the dark matter is calculated
directly using gravity-only N-body simulations, or Monte Carlo
techniques based on the extended Press Schechter theory (Lacey &
Cole 1993).

The final step to get the output simulated galaxy catalogues which
can be compared to observations is the computation of the full wave-
length range SED for each mock galaxy. This should be calculated
by appropriately taking into account for each galaxy its particular
star formation and metallicity history and geometrical arrangement
of the stellar populations and of the ISM, as predicted by the model.
The simulated SED catalogue can then be compared to real ob-
served galaxy surveys, so as to check whether the predictions are
or are not representative of the real Universe and to retrieve some
information on the galaxy formation process. In principle, the most
general way to proceed would be to use a model which allows
any geometrical configuration for the distribution of stars and ISM,
such as a full Monte Carlo RT code. However, this is in practice not
feasible, because of unacceptable computing times, nor necessary
since SAM themselves lack detailed geometrical information about
the simulated galaxies. In fact, RT Monte Carlo codes at present are
only used coupled with hydro-simulations of single galaxies, not
for cosmological applications (e.g. Chakrabarti et al. 2008; Rocha
et al. 2008; Narayanan et al. 2010). Since the attempt to theoreti-
cally understand the assembly of baryons within the hierarchy of
dark matter haloes is inevitably subjected to strong uncertainties
and degeneracies, as many observational constraints as possible
must be taken into account by models, in order to get some hints
as to the overall scenario and possibly the main physical processes
involved. Therefore, only a complete multi-wavelength analysis of
galaxy data can be used to help unlock the complexities of galaxy
formation and evolution.

Most semi-analytical models have made use of simple empiri-
cal treatments to compute the SED (e.g. Guiderdoni et al. 1998;
Kauffmann et al. 1999; Somerville & Primack 1999; Hatton et al.
2003; Blaizot et al. 2004; Kang et al. 2005; Kitzbichler & White
2007). The only SAMs that include a UV to sub-mm RT com-
puted from first principle are GALFORM (Cole et al. 2000, hereafter
G00; Baugh et al. 2005; Lacey et al. 2008; Swinbank et al. 2008;
Lacey et al. 2010), MORGANA (MOdelling the Rise of GAlaxies aNd
Active nuclei, Fontanot et al. 2007; Monaco, Fontanot & Taffoni
2007; Fontanot et al. 2009), and ABC (Anti-hierarchical Baryonic
Collapse; Granato et al. 2004; Silva et al. 2005; Lapi et al. 2006).
These models have been interfaced with GRASIL to make detailed
comparisons and predictions in different spectral ranges.

As previously mentioned, the GRASIL code has been written in
order to calculate an accurate SED in a relatively quick time and
this has allowed the model to be used extensively for calculating the
SEDs for the above mentioned SAMs. Despite this, the calculation
of the IR SED by GRASIL is still often the bottleneck of the whole

project and the computing time becomes prohibitive when consider-
ing the exploitation of large-scale structure simulations such as the
Millennium Simulation (Springel et al. 2005), which would require
millions of galaxy calculations.

To improve on this, with the idea in particular for use with cosmo-
logical applications, we have implemented in GRASIL the possibility
of computing SEDs with an Artificial Neural Network (ANN) al-
gorithm. This will reduce the computing time significantly without
having to rely on unrealistic template approaches or simplified ana-
lytical recipes. According to the required application one can choose
the desired computational method: a full GRASIL calculation or the
quicker ANN mode. The bottleneck within the GRASIL code is the
computation of the cirrus and the MCs dust emissions. It is there-
fore these two processes that the ANN will be applied to, with the
option of using the ANN for either or both of the processes. Another
interesting application made possible due to the improved perfor-
mance of the ANN-based computation would be the combination
of this code with an algorithm which could automatically search
the GRASIL parameter space in order to find optimized parameters
to fit real observed individual galaxy SEDs. In this first paper, the
ANN for the emission from the diffuse dust has been implemented
for two geometrical arrangements, pure disc or spherical distribu-
tion of stars and dust, and we test and apply it to cases suited for
these geometries. In particular, as a practical sample application,
we compute galaxy counts in the Herschel imaging bands for the
ABC model for spheroidal galaxies. In another paper, we will present
the implementation of the ANN also for the mixed bulge+disc
geometry, and apply it to more complex semi-analytical models
(e.g. GALFORM).

Almeida et al. (2010) have already used the ANN algorithm to
insert the GALFORM+GRASIL model into the Millennium Simulation
to study the properties of the population of sub-mm galaxies. That
method is complementary and substantially different from the one
presented here. They identify the properties of the GALFORM galaxies
which determine, through an ANN, their GRASIL SEDs. The method
is successful and extremely fast, since the ANN is used to compute
the entire SED, not only the IR dust emission. However their imple-
mentation is very specific to GALFORM+GRASIL, and each realization
of GALFORM requires a training of the ANN, one for each output red-
shift. The method we have implemented here is less fast but more
general, because the input is directly linked to the galactic proper-
ties effectively determining the portion of the SED dominated by
dust emission (e.g. optical depths, masses of dust, radiation field,
etc.). As a result, one single training is able to cover a large variety
of applications.

In Section 2, we recall the main properties of GRASIL and the latest
updates; in Section 3 we provide some generalities on ANN, and in
Section 3.2 we describe the implementation of ANN in GRASIL, the
choice of the input neurons and the definition of the trained nets;
in Section 4 we show some applications and examples. Finally our
conclusions are presented in Section 5.

2 MODELLI NG SEDS W I TH G R A S I L

2.1 General description

GRASIL (GRAphite & SILicate) is a code constructed to compute the
SED of galaxies from the far-UV to the radio wavelength range,
treating with particular care the effects of dust reprocessing on the
stellar radiation and including continuum and line emission. In this
section, we provide a summary of its principal characteristics, which
we will need below to introduce the implementation of ANN. We
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refer to the original papers for more details (in particular S98; S99;
G00; Panuzzo et al. 2003; Vega et al. 2005).

The main aims of GRASIL are to provide a relatively realistic and
flexible modelling of galaxy SEDs, together with an acceptable
(for most applications) computing time. These requirements are
reflected in its main features.

(i) Galaxies are represented with stars and dust distributed in a
bulge and/or a disc, adopting, respectively, a King and a double
exponential profile (see e.g. fig. 2.7 in S99 or fig. 1 in G00 for a
schematic representation of the geometry and components).

(ii) Three different dusty environments and their corresponding
interaction with stars are considered: the star-forming molecular
clouds (MCs) associated with newly born stars, the diffuse medium
(‘cirrus’) associated with more evolved stars and the dusty envelopes
around AGB stars (intermediate-age stars), their relative contribu-
tion to the SED depending on the star formation history.

(iii) The birth of stars within MCs and their gradual dispersion
into the diffuse medium are accounted for by decreasing the fraction
of energy stars emit within MCs with increasing age over a typical
‘escape time-scale’ (Section 2.5 and equation 8 in S98 for more
details). Therefore, we account for the clumping of (young) stars
and dust within a diffuse medium, and for a greater attenuation
suffered by the youngest stars, this means the attenuation is age-
dependent (e.g. G00; in particular their fig. 11, and Panuzzo et al.
2007a).

(iv) The dust model is made of graphite and silicate spherical
grains with a continuous size distribution including grains in thermal
equilibrium with the radiation field, very small grains fluctuating
in temperature due to the absorption of single UV photons and
PAH molecules (optical properties by Draine & Lee 1984; Laor &
Draine 1993; Li & Draine 2001; Draine & Li 2007). We compute
the response to the incident radiation field for each type of grain.

(v) The RT is exactly solved for the MCs with the Granato &
Danese (1994), Granato, Danese & Franceschini (1997) code orig-
inally developed for AGN torii, implementing the �-iteration al-
gorithm. These are represented as spherically symmetric clouds
with the stars as a central point source (see section 2.5.1 in S98
for a discussion on this assumption). Star-forming MCs typically
have extremely high optical depths even in the IR, which means
IR-produced photons are self-absorbed, thus requiring a full RT
treatment. Moreover, the youngest massive stars still embedded in
MCs are also those emitting more strongly in the UV where the dust
opacity is the highest.

(vi) The model galaxy is binned in appropriately small volume
elements. The radiation field is evaluated in each of them from
the knowledge of the distribution of stars and dust. Consequently,
the local dust emission and the attenuated radiation along each
desired line of sight are computed. The treatment of the RT and
dust emission in the diffuse phase (the real bottleneck of the whole
computation) is approximated (see section 2.5.2 in S98 and 2.5.3 in
S99).

(vii) Our reference library of SSPs is from Bressan et al. (1998)
and Bressan, Silva & Granato (2002). We recall that the effects of
the dusty envelopes around AGB stars and the radio emission (both
thermal and non-thermal) are directly included in these SSPs. But
any desired SSP library can be given in input to GRASIL [e.g. Fontanot
& Monaco 2010 tested the effects of both Bressan et al. and
Maraston (2005) SSPs in MORGANA+GRASIL].

(viii) The output consists of a UV to radio SED. The maximum
resolution is set by that of the input SSPs for the UV to NIR, while
the wavelength points necessary to well define the dust features are

in any case set by the code. In addition to the continuum and dust
features, it is possible to include the computation of the nebular
emission lines as described in Panuzzo et al. (2003).

It is worth noting that although the first release of GRASIL was more
than 10 years ago, it is still the state of the art in the field. In fact,
the basic problem of RT remains to find a compromise between
computing time and choice of approximations, depending on the
purpose. We have carried out over the years several improvements,
mostly following observational progress. In particular, the emission
bands from PAHs have been updated with respect to S98, which
were based on pre-ISO (Infrared Space Observatory) observations,
and Vega et al. (2005), based on ISO observations (Li & Draine
2001), by adopting at present the absorption cross-sections and
band profiles by Draine & Li (2007). This last update has been
driven by the availability of Spitzer data.

2.2 Inputs

The inputs required by GRASIL consist of the star formation, gas and
metallicity evolution histories, and a set of geometrical parameters.

The former ingredients can be provided by analytical star for-
mation laws, or by ‘classical’ chemical evolution models, or by
more complex galaxy formation models (e.g. GALFORM, MORGANA,
ABC, see the Introduction). Our reference code for generating star
formation histories, CHE_EVO, is described in S99 (see also sect-
ion 2.2 in Fontanot et al. 2009), and will be used below to gen-
erate the libraries to train the ANN. It computes the evolution of
the SFR, mass of gas, metallicity and the chemical elements given
an initial stellar mass function (IMF) and an SF law of the kind
SFR(t) = ν Mgas(t)k + f (t), where the first term is a Schmidt-type
SF with efficiency ν, and f (t) is an analytical term. Note, however,
that our approach is independent of this choice, and indeed our aim
is to compute ANNs that can work with any engine to generate the
SF histories.

The other inputs required by GRASIL, some of which can be pro-
vided by galaxy formation models, are as follows.

(i) f MC: mass gas fraction in star-forming MCs. It affects mainly
the FIR sub-mm.

(ii) τMC: optical depth of MCs. It strongly affects the mid-IR and
the silicate absorption feature.

(iii) tesc: escape time-scale of young stars from the MCs. It affects
mainly the IR to UV-optical ratio.

(iv) δ ≡ Mdust/Mgas: dust-to-gas mass ratio. It is customary to
set it either to a fixed value or proportional to the metallicity, unless
provided by a dust evolution model (e.g. as in Schurer et al. 2009).

(v) Bulge scale-radii (core radii of the King profile) and disc
scale-radii and heights (of the double exponential) for stars and dust.
The distribution of the radiation field relative to the dust determines
the dust temperature distribution.

3 C OMPUTI NG SEDS W I TH ARTI FI CI AL
N E U R A L N E T WO R K S

3.1 Basic concepts of ANN

ANN were first introduced as very simplified models of the brain
behaviour (McCulloch & Pitts 1943; Rosenblatt 1958), mathemat-
ical models able to learn from examples and data. They proved
very useful in tackling many computationally complex problems,
generally non-linear, such as pattern recognition, classification and
function approximation. They are now widely used in all scientific
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areas, for instance in biochemistry, neuroscience, computer science,
mathematics, finance, physics as well as astrophysics. The archi-
tecture of ANNs reflects in someway the biological brain, in that
they consist of processing units (neurons) with multiple connections
organized as a network and working in parallel. These connections
have adaptable strengths (synaptic weights) which modify the sig-
nal transmitted to and from each neuron. But in practice ANN can
be considered powerful data modelling tools with different possi-
ble implementations to address different problems. Their ability to
learn, generalization and adaptability offer several advantages over
other data mining and analysis tools.

The working of ANNs is defined by their architecture, propaga-
tion rule and learning algorithm:

(i) Network Architecture. The architecture or topology of ANNs
refers to the pattern of connections between the computing units
and the propagation of data. It can be split into two main classes,
the feed-forward (FF; the kind of ANN we used) and the feedback
or recurrent ANNs. In the FF case, the information moves only in
the forward direction from the input to the output neurons. Recur-
rent networks contain feedback connections, cycles and loops. The
neurons are commonly organized in layers, generally with an input
layer, an output layer and in the more interesting case one or more
hidden layers. In the FF pattern, each layer consists of units which
receive their inputs from a layer directly below and send their output
to units in a layer directly above. There are no connections within
a layer. The simple network which can be built with no hidden
layers is commonly called a Perceptron (Rosenblatt 1958), which
can be used only for linear applications. For more difficult tasks, it
is necessary to have at least one hidden layer (multi-layer percep-
trons, henceforth MLPs). In particular, the universal approximation
theorem (Haykin 1999) states that one single layer of hidden units
suffices to approximate any function to arbitrary precision, provided
that the activation function (see the propagation rule) of the hidden
layer is non-linear. Indeed, in our application we got satisfactory
results with a single hidden layer.

(ii) Signal propagation rule. The basic working of the brain con-
sists in neurons receiving electrochemical signals from other neu-
rons, some of which excite the cell, while others inhibit it. The
neurons add all these contributions and, if the sum is greater than a
certain threshold, the neuron is activated, i.e. it transmits the signal
further on. In analogy, each computational unit in the net receives
a signal from all the neurons it is connected to, with the strength of
each connection quantified by a weight. The unit multiplies each in-
put signal by the weight of the corresponding connection and sums
all the contributions. At least one non-linear activation function f
is operated on the total signal to give the output value that is then
passed on as an input to the neurons in the following layers. In
practice, oj = f (

∑
wjkik), where oj is the output signal from the

j th neuron, and ik are the incoming signals from all the neurons
connected to it, with corresponding weights wjk. Typical activation
functions are the sigmoid, f (x) = 1

1+e−c x , Gaussian f (x) = e−(c x)2

and Elliot f (x) = c x
1+|c x| .

(iii) Learning algorithms. There are two main methods for the
learning or training of the ANNs, supervised and unsupervised nets.
In the first case (our case), the net is trained with a given target, i.e.
the ANN is taught that for a given input it has to provide a given
output, and the net adapts its connections (weights) so as to produce
the desired answer. In unsupervised learning the net does not have
a target output. It is used to find patterns and group the data. There
are several methods within the supervised learning, all of which
consist of a comparison between the predicted output from the

ANN with the target output. Our choice is the back-propagation
(BP) algorithm (Rumelhart, Hitton & Williams 1986), which is
the most widely used one. The errors are propagated backwards
from the output nodes (directly defined by the comparison between
the predicted and target values) to the inner nodes. This method
is used to calculate the gradient of the error of the network with
respect to the network’s modifiable weights and thus to adjust the
weights to find the (local) minimum of the error function with the
gradient descent method.

In GRASIL we have implemented a standard feed-forward multi-
layer back-propagation network (e.g. Bishop 1995; Rojas 1996).

3.2 Implementing ANN in GRASIL

The prediction of galaxy spectra is a complex problem due to the
high number of input and output variables, and the non-linearity
among them. Neural networks represent a viable solution for this
non-linear function prediction.

The typical computing time to run GRASIL on a ∼2 GHz CPU
ranges from nearly half a second for the no dust case (i.e. the stan-
dard pure stellar spectral synthesis which is not our interest here) to
nearly 10 min for the bulge plus disc case. A pure bulge (i.e. spheri-
cal symmetry) requires �1 min, a pure disc �2 min and a combined
bulge and disc geometry ∼10 min (the exact value depending on
the number of radial and angular grid points set according to the
‘compactness’ of the model; see S98 and S99 for details). Most
time is spent computing the IR emission from dust, of which ∼70
to >90 per cent is required by the emission from the cirrus com-
ponent. This is because each volume element of the model in a 3D
grid has its own radiation field and amount of dust, whose emission
is calculated individually for each type of grain of the dust size
distribution, including grains in thermal equilibrium with the radi-
ation field, and small grains and PAH requiring the computation of
a temperature probability distribution function. Instead, computing
the extinction of stellar radiation by the two dusty components of
the ISM (MCs and cirrus) is straightforward, ∼1 s.

These considerations drove our strategy to use an ANN algorithm
to reconstruct only the IR emission from MCs and cirrus. To this
aim, the fast calculation of the extinction by the MCs and the cirrus
provides the amount of energy absorbed and therefore the normal-
ization for the two components, while we have implemented the
ANN to predict their spectral shapes. Since the CPU time required
to predict the IR emission with the ANN is negligible with respect
to the direct computation, with this approach we can expect orders
of magnitude gain in the time performance.

Due to the very different nature and treatment of the MCs and cir-
rus components, the quantities (input neurons) that determine their
respective IR SEDs are different. Therefore, we have implemented
a distinct ANN for each of them. As a byproduct, it is possible to run
the code in the ‘ANN mode’ for both components or for only one
of them. In the latter case, the emission from the other component
is computed in the ‘full’ mode.

We have implemented a standard feed-forward BP MLP with one
hidden layer, using a sigmoid activation function from the input to
the hidden layer. Indeed, by properly identifying the input neurons
and setting the network parameters (number of neurons of the hidden
layer, learning rate, maximum number of iterations) the universal
approximation theorem implies that this architecture is capable of
universal optimal approximation. Moreover, it is found empirically
that networks with multiple hidden layers are more prone to getting
caught in undesirable local minima (Bishop 1995; Haykin 1999). To
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create and use the trained net to predict SEDs we have adapted the
F90 code by B. Fiedler freely available at http://mensch.org/neural/.

3.3 Input and output neurons

For each dusty component, we have identified the physical quantities
controlling their spectral shape. Their integrated luminosity, i.e. the
normalization, is known from the direct computation of the amount
of stellar energy absorbed by MCs and cirrus, respectively.

The identification of the input neurons is based on physical expec-
tations corroborated by working experience with GRASIL. As such,
they are closely related to, but not coincident with, GRASIL param-
eters. This is because different combinations of two or more pa-
rameters produce identical or very similar dust emission SEDs. For
instance, different combinations of dust to gas ratio δ, MC mass
MMC and radius RMC produce the same MC SED as long as the MC
optical depth τ ∝ δMMC/R2

MC is unchanged (S98; S99). The same is
true for the shape of the cirrus SED, if all the relevant masses (cirrus
dust mass and SFR) are varied by a factor f and, at the same time,
the scale radii by

√
f . Also, the cirrus and, even more, the MC dust

emission depend only weakly on details of the spectral shape of the
input stellar radiation, which means that different combinations of
SFR(t), Z(t), galactic age Tgal and MC escape time-scale tesc (which
affects the fraction of starlight heating the MC and that heating the
cirrus) may well give rise to almost identical dust emission in one
or both components.

The output neurons are the values of λLλ in the IR region, both
for MCs and for the cirrus, which usually means several hundred
output neurons.

Input neurons for molecular clouds

Since in all practical cases the MCs are optically thick to the primary
stellar emission heating them, and they are approximated by homo-
geneous spheres with constant density, the shape of the emitted IR
SED is controlled only by the two quantities listed below, which
are simply related to GRASIL parameters. Accordingly, the adopted
input neurons are as follows.

(i) τMC ∝ δMMC/R2
MC, the MC optical depth (conventionally

given at 1 µm).
(ii) RMC[pc]/(k

√
(L�MC,46) the ratio of the MC radius over an

estimate of the dust sublimation radius, i.e. the inner radius of
the dust distribution. The latter depends on the luminosity of stars
within each cloud (in 1046 erg s−1). The constant k depends on the
adopted maximum temperature Ts for dust. We found (see discus-
sion in S98 and S99) that a value of Ts = 400 K properly represents
the maximum attainable dust temperature in star-forming MCs, for
which k � 12. We explicitly note that the value of this constant
is irrelevant as long as we use the same value when training and
using the MLP. In other words, any quantity proportional to this
ratio would be equally good as input neuron.

In Fig. 1, we highlight the separate effect of the two input neurons
in the SEDs of MCs. Their variation is obtained by changing values
of different parameters, as detailed in the caption. The optical depth
has a strong effect in the slope of the MIR and on the depth of the
silicate absorption. In the example depicted, with the starting value
of ∼25 at 1 µm, the IR emission is self-absorbed up to ∼25 µm.
By doubling it, it becomes <1 at ∼40 µm, with a much stronger
self-absorption giving rise to a steeper slope. The increase in the
extension alone allows colder dust temperatures in the outskirts of
the MCs and therefore emission at longer wavelengths.

Figure 1. Example of the effects of the controlling parameters of the MC
SED. Upper panel, continuous (black) line: reference SED (τMC = 25.4 at
1µm, and RMC[pc]/(12

√
L�MC,46) = 104). Dotted (blue) line: effect of

varying τ alone by a factor of 2 (obtained by doubling the dust to gas mass
ratio). Dashed (pink) line: effect of varying the MC extension alone by a
factor of 2 (obtained by decreasing the escape time-scale, i.e. the primary
source luminosity within MCs and therefore the inner radius, to a value able
to provide a factor of 2 increase of the neuron). The SEDs are normalized
to their own energy to highlight the change in shape. Lower panel: residuals
with respect to the reference SED.

Input neurons for cirrus

The cirrus emission is defined by six neurons for spherical symme-
try and nine for discs, listed below. As for mixed bulge and disc
geometry, we have found that if dust heating is dominated by stars
in the disc component, as is the case for nearby spirals, the pure
disc network gives sufficiently accurate results. But for a general
application to mock galaxies output by SAMs, a mixed geometry
must be available, unless the model explicitly takes into account
only spheroidal or disc galaxies. As recalled in the Introduction, in
this paper we present the implementation of the ANN for spherical
or disc geometries, while the application to the mixed geometry will
be presented in a forthcoming paper (in preparation).

(i) log(LCir/L�,c), the cirrus dust luminosity normalized to the
stellar luminosity heating the cirrus. The former can obviously
be derived without actually computing the dust emission, since it
equals the stellar energy absorbed by the cirrus. This ratio provides
a global measure of the amount of dust reprocessing.

(ii) log(MCir/L�,c), the normalized cirrus dust mass, expected
to be strongly correlated with the (distribution of) dust emitting
temperature.

(iii) τp and τe, the polar and equatorial optical depths due to cirrus
alone (integral of the dust density distribution along the polar and
equatorial directions, respectively, conventionally given at 1 µm).
Only one of the two is used for pure bulge geometry, since τe = τp .

(iv) τh, a fictitious optical depth, computed as if cirrus were
spherically and homogeneously distributed. This dummy quantity
was already computed by GRASIL, and it is included here because its
comparison with τp and τe provides a measure of the ‘concentra-
tion’ of the dust distribution independently of the specific density
law assumed. Of course, this concentration significantly affects the
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shape of the emitted SED, and indeed we empirically found that its
inclusion improves the performances of the MLP.

(v) Geometrical ratios. Dependent on the geometry of the galaxy
used. For the bulge component: rc,∗/rc,diff which measures the
‘relative position’ of dust and stars. For the disc component
rd,∗/rd,diff, zd,∗/rd,∗, zd,diff/rd,diff . Taken together these three ratios
measure the relative position of dust and stars and the geometrical
thickness of star and dust distributions.

(vi) Hardness ratio. Ratio of the radiation field at 0.3 µm over
1 µm, heating the cirrus (thus emerging from MCs and stars already
out of MCs). Since small grains and especially PAHs are excited
most effectively by relatively hard UV photons, this quantity is cor-
related with the ratio between the NIR–MIR emission they produce,
and the far-IR due to big grains.

Examples of the effect of the cirrus neurons are shown in Fig. 2.
A variation in the hardness ratio, also by only ∼20 per cent as in
the figure, has an immediate effect on the temperature distribution
of dust grains with small heat capacity, i.e. very small grains and
PAHs, therefore it mainly affects the mid-IR emission leaving al-
most unchanged the far-IR. Increasing the amount of dust alone
has greater effects in the overall equilibrium temperature of dust
grains, and therefore in the position of the peak of the FIR emis-
sion, because of a smaller photon to dust density ratio. A similar
effect in the FIR coupled to a hotter MIR as in the first case can
be obtained by lowering the optical depth of the dust distribution
leaving unchanged the amount of dust. Indeed, in this case, on one
side a lower concentration of the radiation field relative to the dust
density yields colder equilibrium temperatures; on the other side
small grains and PAHs respond to single UV photons, which have

Figure 2. Examples of the effect of the cirrus input neurons. Continuous
line: reference cirrus SED for a spherical model. Dot–dashed line: hardness
ratio increased by ∼20 per cent (obtained by avoiding the SSPs with the
highest metallicity available in our library, so to have somewhat harder
stellar intrinsic spectra). Short dashed line: increase Mdust by a factor of 2
(obtained by doubling δ, and the scale radii by

√
(2) to leave τ unchanged).

Dotted line: decrease τ of cirrus dust by a factor of 5 (by increasing stars
and dust scale radii by the same factor to leave their ratio and the dust
mass unchanged). Three-dot–dashed line: decrease τh by a factor of 10 (by
increasing the galaxy radius by

√
(10) to leave τ essentially unchanged since

the King profile is quite centrally concentrated). Long-dashed line: star to
dust scale radii ratio halved (by halving the stellar scale radius).

a longer mean-free path with a smaller τ . The effect of τh alone is
a modulation with respect to τ . The shape of the SED has a strong
dependence on the star to dust scale radii, since this implies a dif-
ferent distribution of the radiation field and therefore a redefinition
of the temperature distribution function of dust grains. We note that
the input neurons we found to work for the ANN are not fully in-
dependent, in fact a variation of essentially anyone of them implies
also different amounts of reprocessing. In the depicted examples,
the reprocessing changes from a few per cent to ∼40 per cent. We
empirically found that the ANN provides a better performance with
this additional information.

3.4 Network training

The MLPs we use in the following have been trained on some
thousands CHE_EVO+GRASIL models,1 either for pure spheroids or
for pure discs, covering generously the range of parameter values
used in several of our past works. Actually, the definition of how
large the range must be is non-trivial, since the properties of the
mock galaxies calculated in simulations of galaxy formation are
not predictable a priori, nor are those of high-z galaxies in the real
Universe.

For the applications shown in the next section, the range of values
of the input neurons used for the training is very large, this is
particularly required for the ABC galaxy model, characterized by the
presence of extreme phases of the evolution of the SFR (Section 4.2).
Specifically:

(i) τMC = 1 to 70;
(ii) RMC/Rmin = 18 to 3000;
(iii) log(LCir/L�,c) = −2 to −0.02;
(iv) log(MCir/L�,c) = −8 to −6;
(v) τe = 0.01 to 100;
(vi) τp = 0.007 to 70;
(vii) τh = 8e − 4 to 8;
(viii) rc,∗/rc,diff and rd,∗/rd,diff = 0.2 to 5;
(ix) zd,∗/rd,∗ and zd,diff/rd,diff = 0.02 to 0.3;
(x) log(L�,c(0.3)/L�,c(1)) = −0.6 to 0.8.

We trained the net with 90 per cent of the models, randomly cho-
sen within the library generated with the aforementioned range of
parameters, and using the remaining 10 per cent as a verification
set. The training procedure does not (in this application) change
the structure of the NN. We have empirically adjusted the number
of neurons in the hidden layer nhid. As shown in Fig. 3, the er-
ror provided by the network on the verification sets decreases with
increasing number of nodes down to a minimum; then it remains
substantially flat unless the number becomes very large. In other
words, the increase after the minimum is very shallow if any, and
then the minimum point is not very well defined. Guided by this
and similar plots on different test set selections, in the applications
shown below we have adopted nhid = 20 for MCs and 35 for cirrus.
We trained the MLP using 500 training epochs (iterations) with a
learning rate of 0.001. Also these choices are not very critical for
the final results.

An important expected advantage of the ANN technique with
respect to classical interpolations is the capability to ‘learn’ the ef-
fect of each single input neuron on the SED, mimicking in some

1 The training libraries have been efficiently produced using GRASIL WEB
interface GALSYNTH, accessible through http://adlibitum.oat.ts.astro.it/
silva/default.html
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Figure 3. Mean total error (i.e. averaged over all wavelengths and all models
used for the training) provided by the trained network on the normalized (−1
to 1) fluxes of the verification sets, as a function of the number of neurons
in the hidden layer, for MCs (asterisks) and cirrus (crosses).

sense the skill that a real GRASIL user develops with experience.
Therefore, we may expect that the MLP can produce a correct SED,
corresponding to a given choice of input neurons, even when the
trained set does not include examples with the entire set of inputs
neurons bracketing the required ones at the same time. It is normally
sufficient that each single input neuron is independently within the
values included for the training. Indeed, the general performance
we have experienced confirms our expectations. On the other hand,
we expect and found that the ANN often fails catastrophically, when
one or more parameters are not within the range of values of the
training set. For a given input galaxy model, it is therefore funda-
mental to check if the training encloses all the values of the input
neurons. Actually, to prevent the general user from an improper use
of the ANN, we have implemented in GRASIL a check to force the
full RT computation whenever the previous condition is not met.

Note that the ANN adopted in the following has been trained
on models computed with given intrinsic dust properties, specifi-
cally properties compliant with the average Milky Way type dust
(size distributions, relative abundances of graphite and silicates,
PAH abundance, slope of the dust emissivity in the sub-mm, etc.;
see S98). The full GRASIL model has the freedom to modify these
quantities, even if in the standard use this is not usually exploited,
mainly because of their extremely poor knowledge. To do that a
suitable trained network has to be built with the chosen intrinsic
dust properties, and the same input neurons described above. This
is far more convenient than including also these properties as neu-
rons, because of their large number, and also because of little use for
semi-analytical galaxy models whose range of predictions do not
reach such details. This would serve to test specific requirements.

3.5 Computing performance

The implementation of the ANN into GRASIL dramatically reduces
the CPU time required to run the code. As recalled above, with a
∼2 GHz CPU a single run could take anywhere up to ∼10 min
to calculate a SED, depending on the geometry. With the use of
an ANN, this time is reduced to just a few seconds, with the main
CPU time taken up by the processes which are not calculated by
the ANN; a CPU gain of more than 2 orders of magnitude. Such a
remarkable reduction in computing costs should make possible an

efficient comparison of the SEDs of SAMs to large observational
galaxy surveys with a proper dust treatment.

4 A PPLI CATI ONS

4.1 Examples with single SEDs

In Figs 4 to 9, we show examples of comparisons between the
SEDs directly computed with GRASIL with those estimated with the
ANN. These examples comprise model fits to the real and well-
defined SEDs of galaxies in different evolutionary states, which
are commonly used as benchmarks for models of dusty galaxies.
The specific set of parameters of these models were not included in
the training set. Therefore, the trained MLPs perform well enough
for most purposes, such as fast exploration of parameter space.
Given the small amount of CPU time to calculate a single SED

Figure 4. M82: original versus ANN and residuals. Upper panel: black
continuous is total original, red dashed is total ANN; dot–dashed black
and green are for MCs; dotted black and blue is cirrus. Lower panel: total
residual.

Figure 5. NGC 6090: original versus ANN and residual.
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Figure 6. ARP220: original versus ANN and residual.

Figure 7. M51: Original versus ANN and residuals.

using the ANN, it will be possible to employ techniques of auto-
matic optimization for model parameters with suitable programs
(e.g. MRQMIN in Press et al. 1996).

4.2 Application to the ABC semi-analytical model

As mentioned in the Introduction, perhaps the most obvious applica-
tion in which a significantly quicker way to estimate a GRASIL SED is
a considerable advantage is when this model is used in combination
with SAMs. In this case, to test these models against observations
such as LFs, number counts and galaxy scaling relations, GRASIL

has to be run for at least a few thousand mock galaxies, a quite
demanding computing task. On the other hand, since many of these
observables are integrated quantities, reasonably small inaccura-
cies in the computation of each single SED, without systematics,
are acceptable. In this section we demonstrate that our trained MLPs
meet this practical request, showing some applications with the ABC

model (Granato et al. 2004) for the co-evolution of spheroids and
quasi-stellar object (QSO), requiring only a spherical geometry. ABC

Figure 8. M100: Original versus ANN and residual.

Figure 9. NGC 6946: Original versus ANN and residual.

is a simple, yet quite successful, semi-analytical model originally
developed to provide an interpretation for sub-mm selected galaxies
and their possible descendants, the local massive spheroidal galax-
ies, accounting in particular for the growth by accretion of a central
super massive black hole and its feedback on the host galaxy. The
general behaviour of the evolution of the mock galaxies envisaged
by the model is characterized by a strong and relatively short dust-
enshrouded SF phase during which a central super massive black
hole (SMBH) grows, a QSO phase halting subsequent star forma-
tion, and then essentially passive evolution. We refer to the original
papers for more details (G04; Silva et al. 2005; Granato et al. 2006;
Lapi et al. 2006).

Here, to exemplify the effectiveness of our ANN computed SEDs
in the process of SAM validation; we show the expected number
density of the proto-spheroids output by ABC in the PACS and SPIRE
Herschel imaging bands, by computing the SED of each mock
galaxy at all phases (i.e. redshift slices), either with the full code or
the ANN, and compare the results. In Fig. 10, we show examples
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Figure 10. Examples of randomly extracted galaxy models from the ABC SAM. The SEDs obtained either with the full GRASIL (dashed lines) or with the ANN
reconstruction (solid lines) are almost superimposed.

of randomly extracted SEDs from the ABC model. The original and
ANN SEDs are often very difficult to distinguish in these plots.

A systematic comparison is in Fig. 11, showing the residuals
between the original and the ANN SEDs versus wavelength for
∼400 objects extracted from ABC galaxy catalogues at various red-
shifts between 2 and 6. We show the median and the 0.1–0.9 and the
0.05–0.95 percentiles. We point out that the typical error introduced
by the use of the ANN is less than ∼10 per cent, meaning that it
is likely dominated by uncertainties if the adopted GRASIL physics,
by the simplified geometry and by the numerical approximations.
However, a detailed comparison between these contributions to the
total uncertainty in the model is outside the scope of this paper,
while our point here is to investigate the capability of the ANN to
avoid the time consuming GRASIL computations.

Integrated quantities such as LFs and number counts are more
accurately reproduced than single SEDs, since small differences in
the SEDs tend to be smoothed out. To illustrate this, in Figs 12
and 13 we show the integral galaxy counts in the PACS and SPIRE
Herschel bands at 70, 100, 160, 250, 350 and 500 µm for the
ABC model, obtained with both the full computed SEDs and the
ANN quick estimate. The curves can hardly be distinguished, so

that the latter is fully adequate to compare model predictions with
available and forthcoming data. Data for differential number counts
are available at 250, 350 and 500 µm wavelengths, obtained with
the balloon-borne BLAST telescope (Devlin et al. 2009) and very
recently with Herschel-SPIRE. In Fig. 14, we compare the counts by
the ABC model, as obtained with the full and the ANN computation
for the SEDs, and we also compare with BLAST data by Patanchon
et al. (2009, triangles) and Bethermin et al. (2010, asterisks), and
with SPIRE data by Clements et al. (2010, squares) and Oliver et al.
(2010, diamonds). In addition to the forming spheroids, we have
included an empirical estimate for the contribution by late-type
galaxies (spiral and starbursts) from Silva et al. (2004). The number
density of proto-spheroids appears consistent, although quite high
particularly at 250 and 350 µm compared with the available data. A
deeper investigation would require to test the effects of different dust
properties and star–dust distributions on the predicted counts, and
the implementation of a fast algorithm for the SEDs allows to easily
perform this task, moreover by taking into account the effects on the
full wavelength range. A discussion on the interpretation of galaxy
counts is beyond the scope of this paper, and will be presented in
another paper with a more general SAM.
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Figure 11. Residuals as a function of wavelength between original and
ANN SEDs, for a sample of about 400 dusty mock galaxies at various
redshifts between 2 and 6, generated by the ABC spheroid–QSO co-evolution
model (Granato et al. 2004). Continuous (purple) line: median. Dashed (red)
lines: 10–90 per cent percentiles. Dot–dashed (green) lines: 5–95 per cent
percentiles.

Figure 12. Spheroidal integral galaxy number counts in the three Herschel
PACS bands at 70, 100 and 160 µm, as predicted by the ABC SAM (Granato
et al. 2004): comparison between counts obtained with the full computation
for the SED (dot–dashed violet line), and the ANN reconstruction (contin-
uous blue line). The two lines are almost superimposed.

5 C O N C L U S I O N S

We have presented the implementation of an ANN algorithm to
compute the SEDs with the GRASIL code. The main aim is to have
a reliable RT computation for the theoretical SEDs and a short
computing time, sufficiently short to be applied to cosmological
volumes populated by semi-analytical galaxy formation models. But
of course this opens the possibility of fast exploration of parameters
to fit data. The main points of the paper are listed in the following.

(i) SEDs are complex and non-linear functions of many galaxy
properties resulting from their star formation and assembly histo-
ries, such as the age and metallicity distribution of the stars, the
amount and composition of gas and dust, the relative distribution of
dust and stars, etc. An RT computation of the stellar radiation field

Figure 13. Spheroidal integral galaxy number counts in the three Herschel
SPIRE bands at 250, 350 and 500 µm. Meaning of lines as in Fig. 12.

through the dust distribution to get the extincted stellar and dust
emission spectrum is a time-consuming task. The required time
becomes prohibitive in particular for applications involving sim-
ulations of cosmological galaxy catalogues with semi-analytical
galaxy formation models, requiring thousands of mock galaxies at
each redshift slice. On the other hand, in order to exploit as much as
possible all available data to constrain models, it would be prefer-
able to maintain the possibility to assign to each galaxy an SED
that as much as possible reflects its effective properties instead of
relying on pre-defined templates that may have nothing to do with
the galaxy configuration.

(ii) ANN are tools particularly suited to approximate complex
non-linear functions. We have implemented a standard feed-forward
BP ANN into the GRASIL model. The main characteristics of this
model were defined by the requirements of having a relatively re-
alistic representation of galaxies (in particular by accounting for
a two-phase dusty medium heated by stars of different ages and
for the temperature distribution of the dust) and an acceptable (for
many applications) computing time. The real bottleneck to get the
SED is the computation of the dust emission spectrum, since it
requires the computation of the distribution of the radiation field
at each point in the galaxy, and the ensuing dust temperature for
each type of grain. Therefore, we have implemented the ANN to
compute the dust emission spectra, separately for the star-forming
MCs and the diffuse medium due to their different properties. The
gain in computing time is more than 2 orders of magnitude.

(iii) To implement the ANN we have (a) identified the quanti-
ties (input neurons) that effectively control the shape of the dust
emission SED from the two dusty components, and (b) trained the
network with a large set of pre-computed models covering a large
range of values of the input neurons. The input neurons are two for
MCs (optical depth and ratio of outer to sublimation radius), and
seven or nine for cirrus emission, for spherical or disc geometry,
respectively (optical depths, hardness of the radiation field, ratios
of star to dust scale radii, mass and bolometric luminosity of the
diffuse dust). The network is meant to be of general use, because
by construction it is independent of the specifics of the galaxy for-
mation model in use; the quantities that effectively determine the
shape of the dust emission spectrum are extracted from the input
star formation histories and used as input neurons. This is comple-
mentary to the work by Almeida et al. (2010), where an ANN has
been implemented specifically for the combined GALFORM+GRASIL

model. In this case the ANN is meant to give the full SED and the
method is still faster than the one presented here.
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Figure 14. Differential galaxy counts normalized to Euclidean at 250, 350
and 500 µm. The three dot–dashed (violet) and continuous (blue) curves
are the star-forming spheroids from the G04 model with the full and ANN
computation of the SEDs, respectively. The dashed (red) curve is the contri-
bution from late-type galaxies (spirals and starbursts). The total is the black
continuous line. BLAST counts are by Patanchon et al. (2009, triangles) and
Bethermin et al. (2010, asterisks). Herschel–SPIRE counts are by Clements
et al. (2010, squares) and Oliver et al. (2010, diamonds).

(iv) We have tested the computation of the SEDs with the ANN
with single SEDs and with a simple semi-analytical model. In this
first paper the ANN has been implemented for pure spherical or pure
disc geometries. The mixed bulge+disc geometry will be presented
and applied in another paper. We have compared the full and the
ANN computation for model SEDs that fit nearby well-observed
starburst and disc galaxies. We have then made the same compari-
son for SEDs and galaxy counts for the ABC semi-analytical model
by Granato et al. (2004) for the joint formation of spheroids and
QSOs. The ANN appears to perform well in all the explored cases,
which cover star formation histories ranging from relatively quies-
cent spirals, to extreme dust-enshrouded starbursts. It is also to be
noted that small inaccuracies in the SEDs are smoothed out when
computing integrated quantities such as LFs and galaxy counts. As
for the latter, we have shown that the counts in the PACS and SPIRE
Herschel imaging bands for the ABC model, as obtained with the full
and ANN computation, are almost superimposed. This means that
a thorough exploration of the effects of different assumptions on
the dust properties, not output by the galaxy formation model but
that must be assumed for the SEDs, can easily be performed. A dis-
cussion on the implication of these counts for the Herschel surveys
is beyond the scope of this paper, and will be discussed elsewhere.
The computation of SEDs with the ANN method appears robust and
computationally advantageous to analyse and test galaxy formation
models in cosmological volumes.
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