25 research outputs found

    PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence

    Get PDF
    Solar-Induced Chlorophyll Fluorescence (SIF) is an emission of light in the 650–850 nm spectral range from the excited state of the chlorophyll-a pigment after absorption of photosynthetically active radiation (PAR). As this is directly linked to the electron transport chain in oxygenic photosynthesis, SIF is a powerful proxy for photosynthetic activity. SIF observations are relatively new and, while global scale measurements from satellites using high-resolution spectroscopy of Fraunhofer bands are becoming more available, observations at the intermediate canopy scale using these techniques are sparse. We present a novel ground-based spectrometer system - PhotoSpec - for measuring SIF in the red (670–732 nm) and far-red (729–784 nm) wavelength range as well as canopy reflectance (400–900 nm) to calculate vegetation indices, such as the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the photochemical reflectance index (PRI). PhotoSpec includes a 2D scanning telescope unit which can be pointed to any location in a canopy with a narrow field of view (FOV = 0.7°). PhotoSpec has a high signal-to-noise ratio and spectral resolution, which allows high precision solar Fraunhofer line retrievals over the entire fluorescence wavelength range under all atmospheric conditions using a new two-step linearized least-squares retrieval procedure. Initial PhotoSpec observations include the diurnal SIF cycle of single broad leaves, grass, and dark-light transitions. Results from the first tower-based measurements in Costa Rica show that the instrument can continuously monitor SIF of several tropical species throughout the day. The PhotoSpec instrument can be used to explore the relationship between SIF, photosynthetic efficiencies, Gross Primary Productivity (GPP), and the impact of canopy radiative transfer, viewing geometry, and stress conditions at the canopy scale

    High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle

    Get PDF
    The East Asian monsoon is one of Earth’s most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6–7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation

    PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence

    Get PDF
    Solar-Induced Chlorophyll Fluorescence (SIF) is an emission of light in the 650–850 nm spectral range from the excited state of the chlorophyll-a pigment after absorption of photosynthetically active radiation (PAR). As this is directly linked to the electron transport chain in oxygenic photosynthesis, SIF is a powerful proxy for photosynthetic activity. SIF observations are relatively new and, while global scale measurements from satellites using high-resolution spectroscopy of Fraunhofer bands are becoming more available, observations at the intermediate canopy scale using these techniques are sparse. We present a novel ground-based spectrometer system - PhotoSpec - for measuring SIF in the red (670–732 nm) and far-red (729–784 nm) wavelength range as well as canopy reflectance (400–900 nm) to calculate vegetation indices, such as the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), and the photochemical reflectance index (PRI). PhotoSpec includes a 2D scanning telescope unit which can be pointed to any location in a canopy with a narrow field of view (FOV = 0.7°). PhotoSpec has a high signal-to-noise ratio and spectral resolution, which allows high precision solar Fraunhofer line retrievals over the entire fluorescence wavelength range under all atmospheric conditions using a new two-step linearized least-squares retrieval procedure. Initial PhotoSpec observations include the diurnal SIF cycle of single broad leaves, grass, and dark-light transitions. Results from the first tower-based measurements in Costa Rica show that the instrument can continuously monitor SIF of several tropical species throughout the day. The PhotoSpec instrument can be used to explore the relationship between SIF, photosynthetic efficiencies, Gross Primary Productivity (GPP), and the impact of canopy radiative transfer, viewing geometry, and stress conditions at the canopy scale

    Indoor Outdoor - Innovative tiergerechte Haltungsverfahren für die ökologische Schweine- und Rinderhaltung im Rahmen der geänderten EU-Öko-Verordnung

    Get PDF
    In organic cattle and pig husbandry, innovative, animal-friendly systems have been developed in which indoor and outdoor areas cannot be clearly separated. The outdoor and indoor areas should not only meet the EU-regulated minimum space requirements, but also allow the animals´ specific behaviour

    Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis

    Get PDF
    Understanding climate controls on gross primary productivity (GPP) is crucial for accurate projections of the future land carbon cycle. Major uncertainties exist due to the challenge in separating GPP and respiration from observations of the carbon dioxide (CO2) flux. Carbonyl sulfide (COS) has a dominant vegetative sink, and plant COS uptake is used to infer GPP through the leaf relative uptake (LRU) ratio of COS to CO2 fluxes. However, little is known about variations of LRU under changing environmental conditions and in different phenological stages. We present COS and CO2 fluxes and LRU of Scots pine branches measured in a boreal forest in Finland during the spring recovery and summer. We find that the diurnal dynamics of COS uptake is mainly controlled by stomatal conductance, but the leaf internal conductance could significantly limit the COS uptake during the daytime and early in the season. LRU varies with light due to the differential light responses of COS and CO2 uptake, and with vapor pressure deficit (VPD) in the peak growing season, indicating a humidity-induced stomatal control. Our COS-based GPP estimates show that it is essential to incorporate the variability of LRU with environmental variables for accurate estimation of GPP on ecosystem, regional, and global scales.Peer reviewe

    Evaluating the suitability of the SWAN/COSMO-2 modelsystem to simulate short-crested surface waves for a narrow lake with complex bathymetry

    No full text
    Alpine lake in Switzerland. The aim of the study is to investigate whether the model system consisting of SWAN and the numerical weather prediction model COSMO-2 is a suitable tool for wave forecasts for the pre-Alpine Lake Zurich. SWAN is able to simulate short-crested wind-generated surface waves. The model was forced with a time varying wind field taken from COSMO-2 with hourly utputs. Model simulations were compared with measured wave data at one near-shore site during a frontal passage associated with strong on-shore winds. The overall course of the measured wave height is well captured in the SWAN simulation: the wave amplitude significantly increases during the frontal passage followed by a transient drop in amplitude. The wave pattern on Lake Zurich is quite complex. It strongly depends on the inherent variability of the wind field and on the external forcing due to the surrounding complex topography. The influence of the temporal wind resolution is further studied with two sensitivity experiments. The first one considers a low-pass filtered wind field, based on a 2-h running mean of COSMO-2 output, and the second experiment uses simple synthetic gusts, which are implemented into the SWAN model and take into account short-term fluctuations of wind speed at 1-sec resolution. The wave field significantly differs for the 1-h and 2-h simulations, but is only negligibly affected by the gusts
    corecore