35 research outputs found

    Opening the Gate to Money Market Fund Reform

    Full text link

    Global forest management data for 2015 at a 100 m resolution

    Get PDF
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    The Forest Observation System, building a global reference dataset for remote sensing of forest biomass

    Get PDF
    International audienceForest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (aGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. aGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. all plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities

    Multi-tissue integrative analysis of personal epigenomes

    Get PDF
    Evaluating the impact of genetic variants on transcriptional regulation is a central goal in biological science that has been constrained by reliance on a single reference genome. To address this, we constructed phased, diploid genomes for four cadaveric donors (using long-read sequencing) and systematically charted noncoding regulatory elements and transcriptional activity across more than 25 tissues from these donors. Integrative analysis revealed over a million variants with allele-specific activity, coordinated, locus-scale allelic imbalances, and structural variants impacting proximal chromatin structure. We relate the personal genome analysis to the ENCODE encyclopedia, annotating allele- and tissue-specific elements that are strongly enriched for variants impacting expression and disease phenotypes. These experimental and statistical approaches, and the corresponding EN-TEx resource, provide a framework for personalized functional genomics

    Characterization of two carbon allotropes, cyclicgraphene and graphenylene, as semi-permeable materials for membranes

    No full text
    Two-dimensional carbon-based structures have great potential in water purification. Density functional theory calculations and molecular dynamics simulations are performed to characterize two sp2-carbon allotropes, cyclicgraphene (Gr1) and graphenylene (Gr2), as semi-permeable materials for membranes. The allotropes demonstrate perfect salt rejection and good water flux, which, at the considered desalination conditions, are defined by the size of pores, their pore density per membrane unit area, as well as the interaction of particles with membranes. The paper discusses the differences between Gr1 and Gr2 having equilibrium structure and those subjected to 5% biaxial stretching. Gr1 has both higher water flux and strength to failure during biaxial tension than the denser Gr2. Such mechanical behaviour is due to a more uniform elongation of Gr1 interatomic bonds compared to Gr2. The use of these carbon allotropes for water treatment could be a less costly alternative to the application of graphene materials having the size of intrinsic pores insufficient for water molecule penetration.Nanyang Technological UniversityThe authors acknowledge the financial support from the Nanyang Environment and Water Research Institute (Core Fund), Nanyang Technological University, Singapore. E.A. Korznikova appreciates the financial support provided by the Russian Foundation for Basic Research, Grant No. 18-32-20158 (discussions, writing the manuscript). This work was partially supported by the State assignment of IMSP RAS, No. АААА-А17-117041310220-8
    corecore