104 research outputs found

    No evidence for a loss of genetic diversity despite a strong decline in size of a European population of the Corncrake Crex crex

    Get PDF
    The preservation of genetic diversity is an important aspect of conservation biology. Low genetic diversity within a population can lead to inbreeding depression and a reduction in adaptive potential, which may increase extinction risk. Here we report changes in genetic diversity over 12 years in a declining population of the Corncrake Crex crex, a grassland bird species of high conservation concern throughout Europe. Despite a twofold demographic decline during the same period, we found no evidence for a reduction of genetic diversity. The gradual genetic differentiation observed among populations of Corncrake across Europe suggests that genetic diversity is maintained in western populations by constant gene flow from the larger and more productive populations in eastern Europe and Asia. The maintenance of genetic diversity in this species is an opportunity that may help the implementation of effective conservation actions across the Corncrake's European range

    Condition and Phenotype-Dependent Dispersal in a Damselfly, Calopteryx splendens

    Get PDF
    Individual dispersal decisions may be affected by the internal state of the individual and the external information of its current environment. Here we estimated the influence of dispersal on survival and investigated if individual phenotype (sex and wing length) and environmental condition (conspecific density and sex-ratio) affected dispersal decisions in the banded damselfly, Calopteryx splendens. As suspected from the literature, we showed that the proportion of dispersing individuals was higher in females than in males. We also found negative-density dependent dispersal in both sexes and influence of sex-ratio on dispersal. Individuals moved less when sex-ratio was male biased. These results are consistent with a lek mating system where males aggregate in a place and hold mating territories. Contrary to our expectations, neither dispersal nor survival was affected by wing length. Nevertheless, mean adult survival was about 8% lower in dispersing individuals than in residents. This might reflect a mortality cost due to dispersal

    Ecology and extent of freshwater browning-What we know and what should be studied next in the context of global change

    Get PDF
    Water browning or brownification refers to increasing water color, often related to increasing dissolved organic matter (DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phe-nomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while sel-dom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies have been overlooked, making the study of the entire network of the catchment incomplete. While past research inves-tigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes, invasive species, and food webs have been understudied. Research has focused on freshwater habitats without consid-ering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning through the following research actions: 1) increasing our knowledge of ecological processes of browning in other wetland types than lakes and rivers, 2) assessing the impact of browning on aquatic food webs at multiple scales, 3) examining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.Peer reviewe

    More time for aliens? Performance shifts lead to increased activity time budgets propelling invasion success

    Get PDF
    © 2022 The Authors. Published by Springer. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1007/s10530-022-02903-6In the Grinnellian niche concept, the realized niche and potential distribution is characterized as an interplay among the fundamental niche, biotic interactions and geographic accessibility. Climate is one of the main drivers for this concept and is essential to predict a taxon’s distribution. Mechanistic approaches can be useful tools, which use fitness-related aspects like locomotor performance and critical thermal limits to predict the potential distribution of an organism. These mechanistic approaches allow the inclusion key ecological processes like local adaptation and can account for thermal performance traits of different life-history stages. The African Clawed Frog, Xenopus laevis, is a highly invasive species occurring on five continents. The French population is of special interest due to an ongoing expansion for 40 years and a broad base of knowledge. We hypothesize that (1) the French population exhibits increased activity time in the invasive European range that could be devoted to fitness-relevant activity and (2) tadpoles may have less activity time available than adult frogs from the same range. We investigate how thermal performance traits translate into activity time budgets and how local adaptation and differences in the thermal responses of life-history stages may boost the European Xenopus invasion. We use a mechanistic approach based on generalized additive mixed models, where thermal performance curves were used to predict the hours of activity and to compare the potential activity time budgets for two life-history stages of native and invasive populations. Our results show that adult French frogs have more activity time available in Europe compared to South African frogs, which might be an advantage in searching for prey or escaping from predators. However, French tadpoles do not have more activity time in Europe compared to the native South African populations suggesting that tadpoles do not suffer the same strong selective pressure as adult frogs.Open Access funding enabled and organized by Projekt DEAL. This work was supported by the ERANET BiodivERsA grant INVAXEN, with the national funders Agence Nationale de la Recherche (ANR), Deutsche Forschungsgemeinschaft (DFG), Belgian Federal Science Policy Office (BELSPO), and Fundaçao para a Ciencia e a Tecnologia (FCT), as part of the 2013 BiodivERsA call for research proposals. INVAXEN “Invasive biology of Xenopus laevis in Europe: ecology, impact and predictive models”. CW, NK, MM and JM thank the DSI-NRF Centre of Excellence for Invasion Biology (South Africa) and the National Research Foundation of South Africa (NRF Grant No. 87759 to JM). NK would like to acknowledge the Ambassade de France en Afrique du Sud (France). This study was part of the project Life Control Strategies of Alien Invasive Amphibians (CROAA)—LIFE15 NAT/FR/000864 funded by the Life program of the European Commission.Published onlin

    Ecology and extent of freshwater browning - What we know and what should be studied next in the context of global change

    Get PDF
    Water browning or brownification refers to increasing water color, often related to increasing dissolved organic matter (DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phenomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while seldom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies have been overlooked, making the study of the entire network of the catchment incomplete. While past research investigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes, invasive species, and food webs have been understudied. Research has focused on freshwater habitats without considering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning through the following research actions: 1) increasing our knowledge of ecological processes of browning in other wetland types than lakes and rivers, 2) assessing the impact of browning on aquatic food webs at multiple scales, 3) examining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.</p

    Within-Host Speciation of Malaria Parasites

    Get PDF
    BACKGROUND: Sympatric speciation—the divergence of populations into new species in absence of geographic barriers to hybridization—is the most debated mode of diversification of life forms. Parasitic organisms are prominent models for sympatric speciation, because they may colonise new hosts within the same geographic area and diverge through host specialization. However, it has been argued that this mode of parasite divergence is not strict sympatric speciation, because host shifts likely cause the sudden effective isolation of parasites, particularly if these are transmitted by vectors and therefore cannot select their hosts. Strict sympatric speciation would involve parasite lineages diverging within a single host species, without any population subdivision. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a case of extraordinary divergence of sympatric, ecologically distinct, and reproductively isolated malaria parasites within a single avian host species, which apparently occurred without historical or extant subdivision of parasite or host populations. CONCLUSIONS/SIGNIFICANCE: This discovery of within-host speciation changes our current view on the diversification potential of malaria parasites, because neither geographic isolation of host populations nor colonization of new host species are any longer necessary conditions to the formation of new parasite species

    Corncrake conservation genetics at a European scale: the impact of biogeographical and anthropological processes

    Get PDF
    Understanding patterns of genetic structure, gene flow and diversity across a species range is required if we are to determine the genetic status and viability of small peripheral populations. This is especially crucial in species distributed across a large range where spatial heterogeneity makes it difficult to predict the distribution of genetic diversity. Although biogeographical models provide expectations of how spatially structured genetic variation may be at the range scale, human disturbance may cause strong deviations from these theoretical predictions. In this study, we investigated genetic structure and demography at a pan-European scale, in the corncrake Crex crex, a grassland bird species strongly affected by agricultural changes. We assessed population structure and genetic diversity, as well as demographic trends and direction of gene flow, in and among 15 contemporary populations of this species. Analyses revealed low genetic structure across the entire range with high levels of genetic diversity in all sites. However, we found some evidence that the westernmost populations were, to a very limited extent, differentiated from the rest of the European population. Demographic trends showed that population numbers have decreased in western Europe and remained constant across eastern Europe. Results may also suggest asymmetric gene flow from eastern to western populations. In conclusion, we suggest that the most likely scenario is that contrasting demographic regimes between eastern and western populations, driven by heterogeneous human activity, has caused asymmetric gene flow that has buffered small peripheral populations against genetic diversity loss, but also erased any genetic structure that may have existed. Our study highlight the need of coordinated actions at the European scale to preserve source populations and ensure the maintenance of reproductive productivity in the most threatened sites, in order to avoid losing any adaptive potential and too strongly relying on sink source populations whose future is uncertain

    Male Attractiveness Is Influenced by UV Wavelengths in a Newt Species but Not in Its Close Relative

    Get PDF
    Background: Functional communication in the UV range has been reported in Invertebrates and all major groups of Vertebrates but Amphibians. Although perception in this wavelength range has been shown in a few species, UV signalling has not been demonstrated in this group. One reason may be that in lentic freshwater habitats, litter decomposition generates dissolved organic carbon that absorbs UV radiation and thus hinders its use for visual signalling. We tested the effect of male UV characteristics on female sexual preference in two newt species that experience contrasting levels of UV water transmission when breeding. Methodology/Principal Findings: We analysed water spectral characteristics of a sample of breeding ponds in both species. We quantified male ventral coloration and measured male attractiveness under two lighting conditions (UV present, UV absent) using a no-choice female preference design. UV transmission was higher in Lissotriton vulgaris breeding sites. Male UV patterns also differed between experimental males of the two species. We observed a first common peak around 333 nm, higher in L. vulgaris, and a second peak around 397 nm, more frequent and higher in L. helveticus. Male attractiveness was significantly reduced in L. vulgaris when UV was not available but not in L. helveticus. Male attractiveness depended on the hue of the first UV peak in L. vulgaris. Conclusion/Significance: Our study is the first report of functional UV-based communication in Amphibians. Interestingly

    An invasive amphibian drives antipredator responses in two prey at different trophic positions

    No full text
    International audienceGeneralist invasive predators consume prey at different trophic levels and generate drastic changes in local communities. However, the long-term effects of predation may be reduced by eco-evolutionary responses of native populations. The capacity of prey species distributed across the trophic network to develop antipredator responses may determine the ecosystem potential to buffer against the invader. The African clawed frog is a major invader on several continents. Because of its large size, generalist diet, and aquatic lifestyle, we predicted the development of antipredator responses in prey species at different trophic levels. We tested for behavioral shifts between populations within and outside the invasive range in the herbivorous snail Physella acuta and the predatory heterop- teran, the backswimmer Notonecta glauca. We detected antipredator responses in both prey species. In sympatry, P. acuta stayed higher in the water column, while N. glauca spent more time swimming underwater and less time surfacing when the predator cues were present. In allopatry, P. acuta dived deeper and N. glauca spent more time surfacing and stayed longer still underwater. In both species, sympatric populations showed evidence of olfactory recognition of the frog. Our results show that the introduction of a top predator like Xenopus laevis in the pond ecosystem drives behavioral antipredator responses in species across the trophic network. Eco-evolutionary processes may allow some degree of long-term resilience of pond communities to the invasion of X. laevis
    corecore