19 research outputs found
Recommended from our members
Effects of hydrology on zooplankton communities in high mountain ponds, Mount Rainier National Park
Ten high mountain ponds in Mount Rainier National Park, Washington State, were
studied from June through September 1992 to investigate the influences of fluctuating
pond volumes on zooplankton communities. A temporary pond of short wet phase
duration was inhabited by zooplankton taxa with short generation times and a crustacean
taxa with the ability to encyst as drought-resistant resting bodies at immature stages of
development. Relative to permanent ponds, rotifer densities typically were low in
temporary ponds, although Brachionus urceolaris was abundant shortly before the ponds
dried. High volume loss was associated with declining populations of crustaceans.
Daphnia rosea was not present in the crustacean communities of temporary ponds after fall
recharge. Deep-permanent ponds had slower copepod development and two additional
large bodied crustacean taxa relative to shallow-permanent ponds. Because of their small
sizes and sensitivity to environmental change, ponds such as these may provide an early
signal of changes in aquatic systems from global warming
Global data set of long-term summertime vertical temperature profiles in 153 lakes
Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change
Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970-2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of +0.37°C decade-1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+0.08 kg m-3 decade-1). In contrast, however, deepwater temperature trends showed little change on average (+0.06°C decade-1 ), but had high variability across lakes, with trends in individual lakes ranging from -0.68°C decade-1 to +0.65°C decade-1 . The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.Additional co-authors: Karl Havens, Dag O Hessen, Scott N Higgins, Timo H Huttula, Hannu Huuskonen, Peter D F Isles, Klaus D Joehnk, Wendel Bill Keller, Lesley B Knoll, Johanna Korhonen, Benjamin M Kraemer, Peter R Leavitt, Fabio Lepori, Martin S Luger, Stephen C Maberly, John M Melack, Stephanie J Melles, Döerthe C MĂŒller-Navarra, Don C Pierson, Helen V Pislegina, Pierre-Denis Plisnier, David C Richardson, Alon Rimmer, Michela Rogora, James A Rusak, Steven Sadro, Nico Salmaso, Jasmine E Saros, Ămilie Saulnier-Talbot, Daniel E Schindler, Martin Schmid, Svetlana V Shimaraeva, Eugene A Silow, Lewis M Sitoki, Ruben Sommaruga, Dietmar Straile, Kristin E Strock, Wim Thiery, Maxim A Timofeyev, Piet Verburg, Rolf D Vinebrooke, Gesa A Weyhenmeyer, Egor Zaderee
The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data
The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typicallyPeer reviewe
Global data set of long-term summertime vertical temperature profiles in 153 lakes
Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change
Global data set of long-term summertime vertical temperature profiles in 153 lakes
Measurement(s) : temperature of water, temperature profile
Technology Type(s) : digital curation
Factor Type(s) : lake location, temporal interval
Sample Characteristic - Environment : lake, reservoir
Sample Characteristic - Location : global
Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change
Deterioration of the LittoralâBenthic Ecosystem Following Recent Expansion of Signal Crayfish (Pacifastacus leniusculus) in the Worldâs Clearest Large Lake
Some biological invasions can result in algae blooms in the nearshore of clear lakes. We studied if an invasive crayfish (Pacifastacus leniusculus) modified the biomass and community composition of benthic macroinvertebrates and therefore led to a trophic cascade resulting in increased periphyton biomass, elevated littoral primary productivity, and benthic algae bloom in a lake with remarkable transparency [Crater Lake, Oregon, USA]. After quantifying the changes in the spatial distribution of invasive crayfish over a 13-year period, we compared biomass and community composition of littoralâbenthic macroinvertebrates, periphyton biovolume, community composition, nutrient limitation, and the development of benthic algae bloom in locations with high and low crayfish density. In addition, we determined if the alteration in community structure resulted in directional changes to gross primary production and ecosystem respiration. The extent of crayfish distribution along the shoreline of Crater Lake doubled over a 13-year period, leaving less than 20% of the shoreline free from crayfish. At high crayfish density sites, benthic macroinvertebrate biomass was 99% lower, and taxa richness was 50% lower than at low crayfish areas. High crayfish sites show tenfold greater periphyton biovolume, sixfold higher periphyton biomass (chlorophyll a), twofold higher metabolic productivity, and the presence of large filamentous algae (Cladophora sp.). The invasion of crayfish had negative consequences for a lake protected under the management of the USA National Park Service, with direct impacts on many levels of ecological organization.Fil: Scordo, Facundo. Universidad Nacional del Sur. Departamento de GeografĂa y Turismo; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - BahĂa Blanca. Instituto Argentino de OceanografĂa. Universidad Nacional del Sur. Instituto Argentino de OceanografĂa; ArgentinaFil: Girdner, Scott F.. No especifĂca;Fil: San Pedro, Aldo. No especifĂca;Fil: Seitz, Carina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Patagonia Norte. Instituto Andino PatagĂłnico de TecnologĂas BiolĂłgicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino PatagĂłnico de TecnologĂas BiolĂłgicas y Geoambientales; Argentina. Universidad Nacional del Sur. Departamento de GeologĂa; ArgentinaFil: Chandra, Sudeep. No especifĂca
Ordination based on non-metric multidimensional scaling (nMDS) analysis of chironomid communities from the three lakes and lake zones (black fill and NS = nearshore, no fill and DP = deep zone) in this study.
<p>Two axes were chosen to best display the data (stress = 0.20).</p
Pairwise comparisons of chironomid communities from the different habitats in Lake Tahoe, Crater Lake, and Lake Hövsgöl.
<p>Distance R-statistics and <i>p-</i>values given from ANOSIM. The closer R is to 1 the greater the distance or dissimilarity between two communities being compared.</p><p>Pairwise comparisons of chironomid communities from the different habitats in Lake Tahoe, Crater Lake, and Lake Hövsgöl.</p
Map of Lake Tahoe, USA, Crater Lake, USA and Lake Hövsgöl, Mongolia.
<p>Solid circles indicate sampling locations in 2008 and 2009 for Lake Tahoe, 2009 for Crater Lake, and 1995â1997 for Lake Hövsgöl.</p