172 research outputs found

    Integrating a Multi-Tiered System of Supports With Comprehensive School Counseling Programs

    Get PDF
    A multi-tiered system of supports, including Response to Intervention and Positive Behavioral Interventions and Supports, is a widely utilized framework implemented in K–12 schools to address the academic and behavioral needs of all students. School counselors are leaders who facilitate comprehensive school counseling programs and demonstrate their relevance to school initiatives and centrality to the school’s mission. The purpose of this article is to discuss both a multi-tiered system of supports and comprehensive school counseling programs, demonstrating the overlap between the two frameworks. Specific similarities include: leadership team and collaboration, coordinated services, school counselor roles, data collection, evidence-based practices, equity, cultural responsiveness, advocacy, prevention, positive school climate, and systemic change. A case study is included to illustrate a school counseling department integrating a multi-tiered system of supports with their comprehensive school counseling program. In the case study, school counselors are described as interveners, facilitators and supporters regarding the implementation of a multi-tiered system of supports

    The Rocket: Analyzing RTP (Return to Player), Payoff distribution and player behavior in crash games

    Full text link
    Abstract Rocket is a crash game developed by DraftKings, an American publicly traded online casino, sports betting and fantasy sports company. DraftKings Rocket is a game played with a rising rocket. Players must exit the rocket at any point before the rocket crashes. In that case they receive the payoff in accordance to the multiplier of their exit point. If the rocket crashes before the player bails, player’s payoff is 0 (and they lose their bet). The game boasts an unprecedented 97% RTP (Return to Player). For comparison, Atlantic City casino slots typically have a 91-92% RTP, while Vegas casino slots average 92-96% RTP. We plan to answer the following questions: 1) What is the distribution of the rocket crash times? 2) How many players are on board and how many bail before the explosion? 3) What are the optimal Rocket strategies for the player? 4) Can gaming operators attract more players by offering higher RTP levels similarly to how Walmart thrives by offering Everyday low prices and passing on the value to the consumers? 5) Does player behavior differ depending on the amount of money they bet? 6) How can the behavior of Rocket players be extended to that of stock/crypto investors? Implications Statement/Target Audience: This research has significant business implications for both online and offline casinos/gaming operators, Decision Sciences Professionals, Game Theory Researchers, as well as Exchanges, Investors, Traders and Market Makers in the Securities and Cryptocurrency markets

    Montana's Crucial Areas and Connectivity Assessment: An Update and Demonstration of the Crucial Areas Mapping Service

    Get PDF
    Montana Fish, Wildlife and Parks (FWP) completed the Comprehensive Fish and Wildlife Conservation Strategy (CFWCS) in October 2005 as a landscape level plan to identify aquatic and terrestrial focus areas important to species and habitats of "Greatest Conservation Need." As implementation of the CFWCS began, FWP saw a need to refine the conservation scale and include terrestrial game and sport fish, FWP lands, and other recreational values into a Comprehensive Plan for Conservation. The "Crucial Areas and Connectivity Assessment" is an attempt to refine the conservation scale and identify important game and nongame fish and wildlife habitats, critical corridors, and valued recreational areas using a combination of empirical data, modeling based on these data, and expert opinion. The goal of this project is to identify and display critical and important habitats for fish and wildlife. Multiple benefits are perceived through achievement of this goal: increased efficiency in planning and commenting on development proposals, effective targeting and planning for the conservation of valued habitats, and increased opportunity for coordination with other agencies states. FWP spent the past year developing data layers, vetting the layers both internally and within the scientific community. Layers available to date include: game quality, game fish life history, watershed integrity, species of concern, aquatic connectivity, angler use, terrestrial species richness, and core area index. In parallel, FWP has developed an interactive Crucial Areas Mapping Service (CAMS) that depicts these resource values and allows users to relate each resource value to risk factors including energy development, urbanization, and subdivision. As the project develops and nears completion, best management practices and policy related to critical habitats will be produced. In mid-March, we plan to release CAMS to the public as a preplanning tool and comprehensive decision support system

    Drosophila CENP-A Mutations Cause a BubR1- Dependent Early Mitotic Delay without Normal Localization of Kinetochore Components

    Get PDF
    The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint (SAC), which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere-specific chromatin components that provide both a structural and a functional foundation for kinetochore formation. Here we show that cells in Drosophila embryos homozygous for null mutations in CENP-A (CID) display an early mitotic delay. This mitotic delay is not suppressed by inactivation of the DNA damage checkpoint and is unlikely to be the result of DNA damage. Surprisingly, mutation of the SAC component BUBR1 partially suppresses this mitotic delay. Furthermore, cid mutants retain an intact SAC response to spindle disruption despite the inability of many kinetochore proteins, including SAC components, to target to kinetochores. We propose that SAC components are able to monitor spindle assembly and inhibit cell cycle progression in the absence of sustained kinetochore localization

    High-throughput screening in larval zebrafish identifies novel potent sedative-hypnotics

    Full text link
    BACKGROUND: Many general anesthetics were discovered empirically, but primary screens to find new sedative-hypnotics in drug libraries have not used animals, limiting the types of drugs discovered. The authors hypothesized that a sedative-hypnotic screening approach using zebrafish larvae responses to sensory stimuli would perform comparably to standard assays, and efficiently identify new active compounds. METHODS: The authors developed a binary outcome photomotor response assay for zebrafish larvae using a computerized system that tracked individual motions of up to 96 animals simultaneously. The assay was validated against tadpole loss of righting reflexes, using sedative-hypnotics of widely varying potencies that affect various molecular targets. A total of 374 representative compounds from a larger library were screened in zebrafish larvae for hypnotic activity at 10 µM. Molecular mechanisms of hits were explored in anesthetic-sensitive ion channels using electrophysiology, or in zebrafish using a specific reversal agent. RESULTS: Zebrafish larvae assays required far less drug, time, and effort than tadpoles. In validation experiments, zebrafish and tadpole screening for hypnotic activity agreed 100% (n = 11; P = 0.002), and potencies were very similar (Pearson correlation, r > 0.999). Two reversible and potent sedative-hypnotics were discovered in the library subset. CMLD003237 (EC50, ~11 µM) weakly modulated γ-aminobutyric acid type A receptors and inhibited neuronal nicotinic receptors. CMLD006025 (EC50, ~13 µM) inhibited both N-methyl-D-aspartate and neuronal nicotinic receptors. CONCLUSIONS: Photomotor response assays in zebrafish larvae are a mechanism-independent platform for high-throughput screening to identify novel sedative-hypnotics. The variety of chemotypes producing hypnosis is likely much larger than currently known.This work was supported by grants from Shanghai Jiaotong University School of Medicine, Shanghai, China, and the Chinese Medical Association, Beijing, China (both to Dr. Yang). The Department of Anesthesia, Critical Care and Pain Medicine of Massachusetts General Hospital, Boston, Massachusetts, supported this work through a Research Scholars Award and an Innovation Grant (both to Dr. Forman). Contributions to this research from the Boston University Center for Molecular Discovery, Boston, Massachusetts (to Drs. Porco, Brown, Schaus, and Xu, and to Mr. Trilles), were supported by a grant from the National Institutes of Health, Bethesda, Maryland (grant No. R24 GM111625). (Shanghai Jiaotong University School of Medicine, Shanghai, China; Chinese Medical Association, Beijing, China; Department of Anesthesia, Critical Care and Pain Medicine of Massachusetts General Hospital, Boston, Massachusetts; R24 GM111625 - National Institutes of Health, Bethesda, Maryland)Accepted manuscript2019-09-0

    Real-Time Monitoring and Prediction of Airspace Safety

    Get PDF
    The U.S. National Airspace System (NAS) has reached an extremely high level of safety in recent years. However, it will only become more difficult to maintain the current level of safety with the forecasted increase in operations, and so the FAA has been making revolutionary changes to the NAS to both expand capacity and ensure safety. Our work complements these efforts by developing a novel model-based framework for real-time monitoring and prediction of the safety of the NAS. Our framework is divided into two parts: (offline) safety analysis and modeling part, and a real-time (online) monitoring and prediction of safety. The goal of the safety analysis task is to identify hazards to flight (distilled from several national databases) and to codify these hazards within our framework such that we can monitor and predict them. From these we define safety metrics that can be monitored and predicted using dynamic models of airspace operations, aircraft, and weather, along with a rigorous, mathematical treatment of uncertainty. We demonstrate our overall approach and highlight the advantages of this approach over the current state-of-the-art through simulated scenarios

    Predicting Real-Time Safety of the National Airspace System

    Get PDF
    To gain the situational awareness necessary for informed decision making regarding avoidance of airspace hazards, each operator must consolidate operations-relevant information from disparate sources and apply extensive domain knowledge to correctly interpret not just the current state of the NAS but forecast its (combined) evolution over the duration of the operation. This time- and workload-intensive process is periodically repeated throughout the operation so that changes can be managed in a timely manner.The imprecision, inaccuracies, inconsistency, and incompleteness of the incoming data further challenges the process. To facilitate informed decision making, this paper presents a model-based framework for the textitautomated real-time monitoring and prediction of possible effects of airspace hazards on the safety of the National Airspace System (NAS). First, hazards to flight are identified and transformed into sms, that is, quantities of interest that could be evaluated based on available data and are predictive of an unsafe event. The sms and associated thresholds that specify when an event transitions from emphsafe to emphunsafe are combined with models of airspace operations and aircraft dynamics. The framework can include any hazard to flight that can be modeled quantitatively. Models can be detailed and complex, or they can be considerably simplifed, as appropriate to the application. Real-time NAS safety monitoring and prediction begins with an estimate of the state of the NAS using the dynamic models. Given the state estimate and a probability distribution of future inputs to the NAS, we can then predict the evolution of the NAS - the future state - and the occurrence of hazards and unsafe events. The entire probability distribution of airspace sms is computed, not just point estimates, without significant assumptions regarding the distribution type andor parameters. We demonstrate our overall approach through a simulated scenario in which we predict the occurrence of some unsafe events and show how these predictions evolve in time as flight operations progress. Predictions accounting for common sources of uncertainty are included and it is shown how the predictions improve in time, become more confident, and change dynamically as new information is made available to the prediction algorithm

    The Caulobacter crescentus GTPase CgtA C is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels

    Full text link
    The Obg subfamily of bacterial GTP-binding proteins are biochemically distinct from Ras-like proteins raising the possibility that they are not controlled by conventional guanine nucleotide exchange factors (GEFs) and/or guanine nucleotide activating proteins (GAPs). To test this hypothesis, we generated mutations in the Caulobacter crescentus obg gene ( cgtA C ) which, in Ras-like proteins, would result in either activating or dominant negative phenotypes. In C. crescentus , a P168V mutant is not activating in vivo , although in vitro , the P168V protein showed a modest reduction in the affinity for GDP. Neither the S173N nor N280Y mutations resulted in a dominant negative phenotype. Furthermore, the S173N was significantly impaired for GTP binding, consistent with a critical role of this residue in GTP binding. In general, conserved amino acids in the GTP-binding pocket were, however, important for function. To examine the in vivo consequences of depleting CgtA C , we generated a temperature-sensitive mutant, G80E. At the permissive temperature, G80E cells grow slowly and have reduced levels of 50S ribosomal subunits, indicating that CgtA C is important for 50S assembly and/or stability. Surprisingly, at the non-permissive temperature, G80E  cells  rapidly  lose  viability  and  yet  do not display an additional ribosome defect. Thus, the essential nature of the cgtA C gene does not appear to result from its ribosome function. G80E cells arrest as predivisional cells and stalkless cells. Flow cytometry on synchronized cells reveals a G1-S arrest. Therefore, CgtA C is necessary for DNA replication and progression through the cell cycle.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75652/1/j.1365-2958.2004.04354.x.pd

    Determination of Ligand Pathways in Globins: Apolar Tunnels Versus Polar Gates

    Get PDF
    Background: O2 pathways in animal hemoglobins and myoglobins are controversial. Results: Ligands enter and exit sperm whale Mb and Cerebratulus lacteus Hb by completely different pathways. Conclusion: Rational mutagenesis mapping can identify ligand migration pathways and provides experimental benchmarks for testing molecular dynamics simulations. Significance: Globins can use either a polar gate or an apolar tunnel for ligand entry
    corecore