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Situation awareness is necessary for operators to make informed decisions regarding

avoidance of airspace hazards. To this end, each operator must consolidate operations-

relevant information from disparate sources and apply extensive domain knowledge to

correctly interpret the current state of the NAS as well as forecast its (combined) evolu-

tion over the duration of the NAS operation. This time- and workload-intensive process is

periodically repeated throughout the operation so that changes can be managed in a timely

manner. The imprecision, inaccuracy, inconsistency, and incompleteness of the incoming

data further challenges the process. To facilitate informed decision making, this paper

presents a model-based framework for the automated real-time monitoring and prediction

of possible e↵ects of airspace hazards on the safety of the National Airspace System (NAS).

First, hazards to flight are identified and transformed into safety metrics, that is, quantities

of interest that could be evaluated based on available data and are predictive of an unsafe

event. The safety metrics and associated thresholds that specify when an event transitions

from safe to unsafe are combined with models of airspace operations and aircraft dynam-

ics. The framework can include any hazard to flight that can be modeled quantitatively.

Models can be detailed and complex, or they can be considerably simplifed, as appropri-

ate to the application. Real-time NAS safety monitoring and prediction begins with an

estimate of the state of the NAS using the dynamic models. Given the state estimate and

a probability distribution of future inputs to the NAS, we can then predict the evolution

of the NAS - the future state - and the occurrence of hazards and unsafe events. The

entire probability distribution of airspace safety metrics is computed, not just point esti-

mates, without significant assumptions regarding the distribution type and/or parameters.

We demonstrate our overall approach through a simulated scenario in which we predict

the occurrence of some unsafe events and show how these predictions evolve in time as

flight operations progress. Predictions accounting for common sources of uncertainty are

included and it is shown how the predictions improve in time, become more confident, and

change dynamically as new information is made available to the prediction algorithm.
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I. Introduction

Pilots, flight controllers, and other service providers must be familiar with existing and potential hazards
of the National Airspace System (NAS) in order to plan for and execute safe and e�cient aircraft flights.
There are many types of hazards, e.g., busy airport location or bad airport layout, unsuitable aircraft and
avionics design for given circumstances, poor operator training or fitness for flight. Some of these hazards
are immutable, such as terrain; some are fixed over a long duration, such as runway layout; some change
periodically, such as seasonal bird patterns; and some can change over the course of a single flight, such as
the weather. Such hazards lead to increased flight risk and a decrease in NAS safety.

Current state-of-the-art approaches to deal with airspace hazards include the FAA’s Flight Risk Analysis
Tool (FRAT)1 and FAA’s Safety Management System (SMS),2 among others. These approaches rely on the
operator (pilot, dispatcher, controller, etc.) to identify known and potential hazards and maintain situational
awareness of their evolution. However, in many cases, human cognitive biases, external pressures (e.g., pas-
senger desires), and inertia often seep into decision-making and reduce the e↵ectiveness of these approaches.
In contrast, we develop an automated approach to assessing and predicting the safety of the airspace by trans-
forming subjective, potentially-stale decisions to objective, regularly updated, informed decisions, thereby
improving safety for all NAS users. Additionally, many existing tools focus on a subset of all possible hazards
that can a↵ect airspace safety. Instead, our framework is general enough to include any hazard that can be
modeled quantitatively. Further, oftentimes, hazards are evaluated in isolation from other hazards; this can
lead to locally-optimal decisions that do not consider global consequences. For example, avoiding en-route
weather without considering airspace congestion along alternate routes could lead to fuel exhaustion. Our
approach provides information about the current and predicted state of all (modeled) hazards concurrently,
allowing for more informed decisions. Finally, our work di↵ers in how we handle uncertainty. Rather than
ignoring uncertainty (of weather forecast or expected tra�c, for example) or just adding a “fudge factor”
to account for uncertainty (separating aircraft by a little extra, for example, to account for uncertainty in
when a pilot will slow on final approach to landing), we present a systematic, integrated framework for a
rigorous, mathematical treatment of uncertainty. Based on principles of probability and Bayesian analysis,
the proposed methodology can compute the entire probability distribution (expressed in terms of probability
density functions) of NAS-related quantities of interest without making restrictive assumptions regarding
their distribution type and/or parameters.

This work aims at providing techniques and tools to assess and predict the safety of the NAS in real time,
enabling NAS operators to take preemptive actions that avoid unsafe situations and reducing the need to
mitigate them. We limit the scope of the safety assessment to hazards that (i) can be measured or estimated
through one or more data sources, and (ii) follow a predictable evolution. To this end, we have developed
an initial framework for airspace real-time monitoring and prediction. The prediction horizon may vary
from a few minutes to many hours, depending on availability and accuracy of forecasts. The framework is
model-based, that is, we develop models of the various components of the NAS and how they interact, in
order to predict its behavior over time. The overall approach consists of two parts: an o✏ine phase, in which
we define safety metrics and safety thresholds, and develop the models; and an online phase, in which we
compute the probability distributions for quantities of interest, such as the state of the NAS, future state of
the NAS, and occurence, timing, and likelihood (measured in terms of probability) of undesirable events.

The paper is organized as follows. The safety monitoring and prediction problem is formulated in Sec-
tion II. Sections III and IV present the o✏ine safety analysis and the online real-time monitoring and
prediction framework, respectively. Section V demonstrates the implementation of this framework in simu-
lation through an illustrative scenario, concerning wake turbulence. Finally, Section VI concludes the paper
and presents future work.

II. Problem Formulation

For any discrete time point k, the NAS, or a subset of interest, is in some state:

x(k) = [x1(k), x2(k), . . . , xn(k)]
T
, (1)

including, for example, aircraft positions and speeds, weather system positions, etc. From these states, at
time k, we can compute a set of safety metrics, �, using an algebraic function F of the states:
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�(k) =

2

66664

�1(k)

�2(k)
...

�m(k)

3

77775
=

2

66664

F1(x(k))

F2(x(k))
...

Fm(x(k))

3

77775
= F(x(k)). (2)

So, if we know the state of the NAS at some point in time, using F we can compute the corresponding safety
metric vector.

There are points in the space of � (or, equivalently, x) that are unacceptable to NAS operations, corre-
sponding to unsafe events e 2 E, such as loss of separation, an aircraft being within a convective weather
region, high congestion, low fuel, etc:

E = {e1, e2, . . . , el}. (3)

The boundary between the acceptable and unacceptable space of � is defined through a threshold function
on that space:

oE(k) =

2

66664

oe1(k)

oe2(k)
...

oel(k)

3

77775
=

2

66664

Te1(�(k))

Te2(�(k))
...

Tel(�(k))

3

77775
= TE(�(k)), (4)

where oei(k) is a Boolean variable that indicates whether event ei has occurred (oei(k) = true) or not
(oei(k) = false). The NAS is in an acceptable state if all elements of oE(k) are false, and in an unacceptable
state otherwise. For each event e we have an individual threshold function Te, which, in general, is a function
of all the safety metrics, but, in practice is typically only a function of a small subset. The time of occurrence
for some event e, ke, is then defined as the first time at which its threshold function evaluates to true, i.e.,

ke(k) , inf{ki 2 N : ki � k ^ Te(�(ki)) = true}, (5)

where k is the current time. The time remaining until that event, �ke, is defined as:

�ke(k) , ke(k)� k. (6)

We define the vector of event times (i.e., the earliest time that each event ei occurs) as

kE = [ke1 , ke2 , . . . , kel ]
T
. (7)

Since the state of the NAS is not known exactly, and there is much uncertainty in future conditions
and operations, all of these quantities are uncertain and must be described by probability distributions
(expressed in terms of underlying probability density functions). Thus, the goal is to compute the probability
distributions of these quantities, not point estimates. We can then define the monitoring problem as follows.

Problem 1 (Monitoring). The monitoring problem is, for the current time k, to compute the probability
density function p(�(k)).

Given p(�(k)), we can also compute p(oE(k)) using TE to determine the probability of any of the safety-
related events occurring at time k. Note that probability density functions (denoted by p(.)) are used to
represent the uncertainty in various variables. Later, P (.) is used to denote probabilities.

For prediction, without loss of generality, we introduce a prediction horizon, kH > k. We are interested
only in predicting what happens up to time kH . We denote the future values of a variable a from time k to
kH using AkH

k .

Problem 2 (Prediction). The prediction problem is, for the current time k, to compute the probability
density function p(�kH

k ).

Given p(�kH

k ), we can also compute (i) the probability density function p(OkH

E,k) using TE , (ii) the
probability of some event ei occurring within [k, kH ], (iii) the probability of any subset of events in E

occurring within [k, kH ], (iv) the probability density function of future event times, p(kE), and (v) other
derived quantities of interest.
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III. Safety Analysis and Modeling

The first step in applying our framework to the aviation safety domain requires determining the quantities
of interest for monitoring and prediction. To this end, we researched National Transportation Safety Board
(NTSB) and FAA aviation accident and incident reports.3 Not every unsafe situation leads to an accident
or incident, however, so we greatly expanded the list of potential hazards to airspace safety by also studying
Aviation Safety Reporting System (ASRS) reports.4 For our work, we focused on a subset of hazards within
three main categories: (i) airspace-related hazards, e.g., inoperative navigation aids or high congestion; (ii)
environmental hazards, e.g., convective weather or animal activity; and (iii) human-performance hazards,
e.g., pilot fatigue or pilot distraction. The list of hazards is too voluminous to include in this paper, and
is documented in a separate report.5 Much prior research6,7, 8, 9, 10,11,12 has focused on aircraft malfunction
hazards, e.g., engine failure, structural issues, sensor malfunctions, and hence will not be covered in this
paper, although our approach can include these hazards if desired.

After identifying potential hazards, the next step is to design a set of safety metrics, �, as an algebraic
function F of the states, x, that quantify these hazards. These safety metrics are quantities of interest that
should be monitored and predicted in order to predict unsafe events. Recall from Section II that an unsafe
event is a transition event from an acceptable to unacceptable space of �, and these boundaries between the
acceptable and unacceptable spaces are defined through threshold functions, TE(�(k)). Threshold functions
can take any general form. Selecting an appropriate threshold can be challenging. For some safety metrics,
rules and regulations dictate a threshold (however, each operator can select a more conservative threshold if
desired). For example, FAA regulations require that certain categories of flights remain clear of particular
special use airpaces (SUA). For this case, the threshold for the safety metric distance from SUA could
be set to 0. For other safety metrics, analysis, data mining, or consultation with subject matter experts
or the operators may be necessary. For example, the threshold for a congested airspace safety metric is
a↵ected by composition of tra�c (e.g., all heavy jets vs gliders, helicopters, small general aviation aircraft,
and large and heavy jets), flight paths (single stream vs multi-stream merging), and even the controller on
console (some controllers move tra�c more e�ciently than others). In these cases, we can use a hybrid
method to determine appropriate thresholds, combining information from multiple sources. We can also
leverage individual information, such as personal minimums, level of certification, years of experience, etc.,
to determine such thresholds.

To illustrate the process using an example, aircraft separation is a safety metric that constantly needs
to be monitored and predicted in order to predict a loss of separation unsafe event. The safety metric
function takes as inputs the positions of two aircraft, and outputs the horizontal distance between them,
their heading with respect to each other, and the altitude di↵erence. For the threshold on this safety metric,
general separation standards for en-route flight provide the value of 5 nautical miles for lateral separation
and 1000 feet for vertical separation (per FAA Order JO 7110.65).

Table 1 lists some example safety metrics, the arguments their corresponding safety metric functions
can take, the outputs of these safety metric functions, and example threshold functions. Note that this list
is provided for illustrative purposes and is by no means exhaustive. A NAS participant, such as a control
center or an airline, would generate their own safety metrics, safety metric functions, and threshold equations
based on their requirements. A more comprehensive list of safety metrics, along with a discussion on how
to determine thresholds, is available in.5

Table 1: Some Example Safety Metrics

Safety metrics Safety Metrics Function Arguments Safety Metrics Function Out-
puts

Example of Threshold Func-
tions

distance and heading
to weather event

point of interest, weather severity,
weather type, time

distance and heading distance.thunderstorm > 20 mi
and thunderstorm.intensity <
MEDIUM

weather at coordi-
nate

point of interest, time matrix of all weather categories
(e.g., hail, rain, snow, mist,
mixed, turbulence, thunder-
storm, wind, microburst, wind-
shear, etc.) and their rele-
vant properties (e.g., severity,
phase, type, persistence, direc-
tion of movement, etc., temper-
ature, humidity)

A threshold is needed for each
element of the matrix. Some
examples: turbulence.intensity
< MODERATE, thunder-
storm.intensity  MOD-
ERATE, rain.intensity <
SEVERE
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Table 1: Some Example Safety Metrics

Safety metrics Safety Metrics Function Arguments Safety Metrics Function Out-
puts

Example of Threshold Func-
tions

risk of wake turbu-
lence

point of interest, time, {weather at coor-
dinate}, type of preceding aircraft

risk category, e.g., low,
medium, high

wake turbulence risk 
MEDIUM

avoidance areas at
coordinate

point of interest, time matrix of avoidance area cate-
gories (e.g., SUAs such as re-
stricted, warning, alert, TFR,
practice areas, controller train-
ing areas, special event areas,
etc., obstacles, noise sensitive
areas, airport hotspots) and
status (e.g., active/inactive, re-
striction type, allowed noise
level, etc.)

avoidance area.tfr.active =
FALSE

degree of operational
normalcy

volume of interest, time, number of re-
strictions (like miles in trail (MIT) to
an adjoining center), cumulative sched-
uled delay, flow control programs in e↵ect,
emergency/non-emergency situations

Normalcy score, e.g., low,
medium, high

ops normalcy > LOW

IV. Real-Time Monitoring and Prediction

Once potential hazards are selected and safety metrics defined, the goal is to, in real-time, monitor the
safety metrics, �(k), and predict the occurrence of unsafe events, E. In order to estimate the current value
of �(k), we must first estimate the state of the NAS, x. Then, given the state estimate and probability dis-
tributions (in terms of probability density functions) of future inputs to the NAS (e.g., winds aloft forecasts,
planned aircraft routes, etc., for some future duration of interest), we can predict the future values of x and
� and the occurrence of events E. Following a model-based approach, both these tasks require dynamic
models of the NAS.

First, Section IV-A describes a generic architecture that enables real-time monitoring and prediction.
Then, Section IV-B describes modeling approaches for the NAS. Section IV-C covers uncertainty quantifi-
cation and management. Section IV-D discusses solutions to the monitoring problem, and Section IV-E
discusses solutions to the prediction problem, using these models. Section IV-F discusses how likelihoods of
unsafe events are combined.

A. Architecture

Monitoring and prediction must be performed in an integrated manner in order to continuously assess the
safety of the overall NAS; the outputs of the monitoring step are inputs to the prediction step. Our approach
to such an architecture is model-based, that is, we develop models of the various components of NAS and
how such components interact, in order to predict its behavior over time. In order to predict the value of
�(k) in the future, and to predict when undesirable events will occur, we require a model describing how
the state x evolves in time:

x(k + 1) = f(k,x(k),u(k),v(k)), (8)

where f is the state function, u is the input vector (exogenous inputs to the system, such as the aircraft’s
intended flight routes and wind velocity at various altitudes), and v is the process noise vector. The state
equation allows us to compute future values of the state given the inputs, and to compute future values of
� and evaluate the threshold function, TE .

In order to make a prediction at time k using f , we require x(k), which, in general, is not known. Instead,
we have available an output vector y, defined through an output equation:

y(k) = h(x(k),u(k),n(k)), (9)

where h is the output function, and n is the sensor noise vector. We need to infer x(k) from y(k) using
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Figure 1. Real-time architecture.

f and h, and for this we use state estimation algorithms. Due to the sensor noise n(k), we obtain only a
probability density function p(x(k)).

The overall architecture is shown in Fig. 1. In the monitoring step, given the inputs u, the outputs
y(k), the state equation f , and the output equation h, we must estimate the current state p(x), and, given
p(x) and the safety metric equation F, compute p(�(k)). In the prediction step, at time k, given p(x(k)),
the state function f , the safety metrics �, the safety metric function F, the set of events E and threshold
function TE , the future input probability density function p(UkH

k ), and the future process noise probability

density function p(VkH

k ), we must compute probability density functions for XkH

k , �kH

k , OkH

E,k, kE , and P (e)
for each e 2 E.

B. Modeling

The models must define the state x, the inputs u, the outputs y, the state function f , and the output
function h. In addition, we require models of the process noise v and sensor noise n and other sources of
uncertainty.

To model the NAS at a system-level, we require models of aircraft, pilots, controllers, weather phenomena,
restricted airspace, etc. In this paper, we limit to models of aircraft only. We assume that pilots control the
aircraft according to a known flight plan, and consider only wind as a weather phenomenon. In the following,
we describe the equations of the models used.a Note that because our approach is model-based, the medium-
fidelity models used here can always be replaced with higher fidelity models, without any changes required
in the algorithms (i.e., the models are inputs to the algorithms).

We use kinematic models of aircraft navigation with simplified dynamics and control, similar to the
models developed by others.13,14,15 The aircraft state vector is defined as

x(t) =
h
Va(t) Vh(t) �a(t) h(t) �(t) ⌧(t)

iT
, (10)

where Va is the indicated airspeed, Vh is the vertical speed, �a is the aircraft heading, h is the mean sea
level (MSL) altitude, � is the latitude, and ⌧ is the longitude. Note that we assume there is no roll and the
aircraft may rotate only along the other two axes.

The wind vector, with magnitude Vw and heading �w, causes the aircraft to drift. The groundspeed
vector, with magnitude Vg and heading �g, is the vector addition of the airspeed and wind vectors.14 Thus,
in order to follow a desired ground track, the commanded heading must be corrected for the wind.

For the purposes of this paper, we assume that each aircraft has a set of waypoints or fixes which it must
navigate to, each defined by a latitude �⇤, a longitude ⌧⇤, an altitude h⇤, and a time t⇤. We assume also that
the control is such that the commanded airspeed, climb rate (vertical speed), and heading are set to reach
the desired position at the desired time, using great-circle heading (�GC) and distance (dGC) calculations:

dGC = 2R arcsin

 s

sin2
✓
�

⇤ � �

2

◆
+ cos(�) cos(�⇤) sin2

✓
⌧

⇤ � ⌧

2

◆!
, (11)

�GC = arctan
sin(⌧⇤ � ⌧) cos(�⇤)

(sin(�⇤) cos(�)� sin(�) cos(�⇤) cos(⌧⇤ � ⌧))
, (12)

aThe models are described in continuous time t; note that they are converted to discrete time for a given sampling rate for
use in the algorithmic framework.
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where R = RE+h, with RE being the MSL radius of the Earth. Then, commanded airspeed V

⇤
a , commanded

heading �

⇤
a, and commanded vertical speed V

⇤
h are described by

V

⇤
a =

dGC

t

⇤ � t

� Vw cos (�w � �a) , (13)

�

⇤ = �GC � arcsin

✓
Vw

Va
sin(�w � �g)

◆
, (14)

V

⇤
h =

h

⇤ � h

t

⇤ � t

, (15)

where Vw cos (�w � �a) is the wind correction term to the airspeed, and the arcsin term is a wind correction
term to the heading.14 The wind vector W is considered an input defined by its speed and heading, or
equivalently its north and east components, WN and WE , and is assumed to be a function of position.

The latitude, longitude, and altitude evolve in time as described by

�̇t = (Va cos � cos�a +WN )/R, (16)

⌧̇t = (Va cos � sin�a +WE)/(R cos�), (17)

ḣ = Vh, (18)

where � is the flight path angle, approximated by

� = arcsin(ḣ/Va). (19)

We assume some simplified dynamics, where the airspeed, climb rate, and heading all change to the
commanded values with some “inertia” that abstracts the more complex aerodynamic equations:

V̇a = (V ⇤
a � Va)/Ja, (20)

V̇h = (V ⇤
h � Vh)/Jh, (21)

�̇a = (�⇤ � �a)/J�a , (22)

where the J parameters are represent the inertia.
The inputs to this model include the wind and desired position variables:

u(t) =
h
Vw(t) �w(t) �

⇤(t) ⌧

⇤(t) h

⇤(t) t

⇤(t)
iT

. (23)

The overall model of a given region of the NAS is composed of the models for the aircraft in that region.
The system-level inputs are the winds and waypoint sets for each aircraft.

C. Uncertainty Quantification and Management

In order to systematically and accurately account for the presence of uncertainty in the NAS, a series
of uncertainty-related activities needs to be performed. These activities are (i) uncertainty characteriza-
tion/quantification, (ii) uncertainty propagation, and (iii) uncertainty management. Uncertainty charac-
terization/quantification deals with estimating and characterizing the various sources of uncertainty that
a↵ect NAS safety analysis. Uncertainty propagation deals with systematically quantifying the e↵ect of the
aforementioned uncertainties on unsafe events and quantities of interest (safety metrics, time to unsafe event,
etc.). Finally, uncertainty management deals with various activities that can e↵ectively conduct safe op-
erations given the estimated amount of uncertainty; typically, uncertainty management is closely tied into
decision-making activities.

It is important to identify all quantities that can be potentially uncertain at the start of the modeling
stage. Consider any generic time index kP at which prediction is desired to be performed; the potential
sources of uncertainty include: (i) the state at kP , given by x(kP ); (ii) the measurement error (sensor noise)
at kP , given by n(kP ); (iii) the future input values, given by UkH

kP
, and (iv) the future process noise values,

VkH

kP
. As a result of the above sources of uncertainty, the safety metrics are also uncertain at all future time

instances, i.e., �kH

kP
is uncertain. Hence, it would be necessary to compute the probability density function as

p(�kH

kP
). Also, there is a probability of occurrence of each safety-related event, denoted as p(OkH

E,kP
). Finally,

the time until the occurrence of each safety-related event is also uncertain and such a time also needs to be
represented using a probability density function, denoted as p(kE).
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Algorithm 1 �kH

kP
 Predict(x(kP ),U

kH

kP
,VkH

kP
, kH)

1: for k = kP to kH do

2: x(k + 1) f(k,x(k),UkH
kP

(k),VkH
kP

(k))
3: �(k + 1) F(x(k + 1))

4: end for

D. Monitoring

Monitoring the NAS can be viewed as a Bayesian inference problem. We have various sensors measuring
the current state of the NAS, such as GPS, radar, aircraft instrumentation, and weather observations. We
have also a dynamic model of how the NAS evolves, f , given its inputs u, such as intended flight routes,
scheduled departure times, etc. The inputs to the monitoring problem are the known inputs to the NAS, u,
and the available observations, y, and the goal is to infer, i.e., estimate, the true state of the NAS, x using
the model. From the state, we can evaluate the safety metrics, �.

Fundamentally, the monitoring step involves the computation of state x(kP ) at any desired time-of-
prediction, kP . This step can be expressed using Bayes theorem, as:

p(x(kP )|y(kP )) =
p(x(kP � 1))p(y(kP )|x(kP ))R

p(x(kP � 1))p(y(kP )|x(kP ))dx(kP )
. (24)

Note that the state-estimate from the previous time step (p(x(kP � 1))) is used as a prior for the current
time step. The likelihood term is denoted as p(y(kP )|x(kP )), and is computed based on the output model,
explained earlier in Eq. 9.

There are many algorithms that may be used to solve this general problem. Since our models are
nonlinear, they require a nonlinear filter (such as unscented Kalman filters or particle filters16,17,18,19).
These algorithms all have the same basic structure. For a new time step, we first predict the new state,
based on the previous state and the inputs. Then, we correct the state based on the available observations
and the likelihood functions. Given some assumption of uncertainty in the model and some assumption of
uncertainty in the observations, the algorithms find the most likely state.

E. Prediction

The goal of the prediction problem is to compute the future evolution of the NAS state x, the safety metrics
�, and the occurrence of safety events E from prediction time kP up through the prediction horizon kH . In
loss of separation prediction, for example, kH � kP = 20 minutes is used in practice. Ultimately, we want to
find the probability density functions of the state trajectory, p(XkH

kP
), the safety metric trajectory, p(�kH

kP
),

and the event times p(kE), as well as the probability of the di↵erent events occurring within the prediction
horizon.

Ultimately, the prediction problem is an uncertainty propagation problem.20 We have an uncertain
estimate of the current system state, and uncertain future inputs to the NAS. We need to propagate all
these uncertainties through the model f to determine the probability density functions of future variables.
This is a key di↵erence of our work from past approaches to prediction in the NAS: we bring in all the sources
of uncertainty from the beginning, in a formal, principled way, rather than using deterministic models for
prediction and then accounting for errors after-the-fact.

The underlying function to any prediction algorithm is given as Algorithm 1. At a given time of prediction
kP , with realizations of the state x(kP ), the future inputsU

kH

kP
, the future process noiseVkH

kP
, and a prediction

horizon kH > kP , the algorithm simulates the NAS state forward up to kH , and computing the corresponding
safety metrics. From the safety metrics, we can compute whether any of the unsafe events have occurred and,
if so, when they first occur. Note that the performance of this prediction algorithm is directly dependent on
the accuracy of the information fed in the form of inputs into this algorithm.

We use Monte Carlo sampling for prediction in this paper. A standard Monte Carlo approach generates
many realizations of the prediction inputs, and calls Algorithm 1 for each realization. We compute samples
of future trajectories of the safety metrics, from which we can directly compute the times of unsafe events,
probabilities of events occurring at a certain time or within a certain interval, etc. This set of samples
establishes a probability distribution (in terms of density) for the safety metrics and the related variables.
For example, we can compute the probability of some e occurring by kH simply as the number of samples
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Algorithm 2 {�kH

kP
}Ni=1 = MonteCarlo(p(x(kP )), p(U

kH

kP
), p(VkH

kP
), kP , kH , N)

1: for i = 1 to N do

2: x(kP )
i ⇠ p(x(kP )) {Sample state}

3: U

kH ,i
kP
⇠ p(UkH

kP
) {Sample future inputs}

4: V

kH ,i
kP

⇠ p(VkH
kP

) {Sample future process noise}
5: �

kH ,i
kP
 Predict(x(kP )

i,UkH ,i
kP

,VkH ,i
kP

, kP , kH)

6: end for

Overall Likelihood of Being Unsafe 

Likelihood of  
Being Unsafe 

Example event 1: Aircraft 
Separation Violation  

Likelihood of  
Being Unsafe 

Example event 2:  Aircraft-
Weather Violation  

Likelihood of  
Being Unsafe  

Example event 3: Congestion 
in region of interest 

Aij 
Aircraft “i” versus 
Aircraft “j” unsafe 

(all i, j) 

Wij 
Aircraft “i” versus 
Weather “j” unsafe 

(all i, j) 

Ci 
Congestion in Region 

“i” (for all i) 

P(Aij ) P(Wij ) P(Ci )

P(e1) = P( ∀i, j
i≠ j

∪ Aij )

P(∪i ei )

P(e2 ) = P( ∀i, j∪ Wij ) P(e3) = P( ∀i∪ Ci )

Likelihood that aircraft “i” and aircraft 
“j” violate minimum separation 

Likelihood that aircraft “i” and weather 
“j” violate minimum separation 

Likelihood that region “i” is 
congested 

."."."" .".".""

Figure 2. Probability Tree: Likelihood of Unsafe Events

with finite kE divided by N . Algorithms 1 and 2 can also be easily extended to provide the probability of
the event occurring at each time point within [kP , kH ]. Over a set of events, we can easily also compute the
probability of any safety event occurring within the prediciton horizon, and the probability of one occurring at
each time point, and related probability distributions. Though exhaustive sampling can be computationally
expensive in large scale applications, alternative e�cient methods will be considered in future work.

F. E↵ect of Uncertainty on Safety: Likelihood of Unsafe Events

Once the uncertainty in the prediction of the safety metrics is computed, the likelihood of unsafe events can
be computed. Consider a generic unsafe/undesirable event e, and the above prediction framework can be
used to compute the probability of occurrence of e; let P (e) denote the corresponding probability.

Consider multiple events related to safety, as shown in Fig. 2. For the sake of illustration, three unsafe
events are chosen: loss of aircraft-to-aircraft separation (minimum distance requirement not being met), loss
of aircraft-to-weather separation (insu�cient distance between an aircraft and an adverse weather region),
and high congestion (upper workload limit in number of aircraft being violated) in a sector/region of interest;
however, the proposed method is general enough to be extended to consider arbitrary types of NAS-related
events.

In general, the computation of likelihood and probability of unsafe events varies from one event to another.
These probabilities are calculated for all future time instants within [kP , kH ], based on information available
at the present time instant. As time keeps evolving, more information is available, and the probabilities for
all future safety-related incidents keep evolving as well. Multiple safety metrics can be computed and the
likelihood of safety in each scenario can be computed.

While it is important to compute the likelihood of each unsafe event, it is also important to combine the
likelihoods across multiple events. Any occurrence of any unsafe event renders the NAS unsafe. In other
words, if any unsafe event were to occur, then it means that the airspace is unsafe. Consider events ei

(i = 1 to n) that correspond to multiple unsafe events; the occurence of event ei means that safety has been
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violated with respect that particular event. Let e denote the event that the NAS is unsafe; hence, e is said
to have occurred when any of the events ei has occurred. Hence, it is possible to calculate the probability
that the entire airspace is unsafe, as:

P (e) = P ([8iei) (25)

Note that P (ei) (8i, i.e., for each hazard) and P (e) can be calculated for all future time instants based
on information available at the present time instant. As explained earlier, time keeps evolving and these
probabilities (for occurence of unsafe-incidents in the future) keep evolving too.

Also, note that the above equation simply calculates the probability that any unsafe event occurs. How-
ever, it does not take into account the criticality associated with each event. Future work needs to account
for this factor in computing the overall safety of the airspace and develop metrics that not only include the
information regarding uncertainty but also important information regarding risk and criticality.

V. Case Study - Wake Turbulence in the Terminal Airspace

In this section, we illustrate our overall framework with an example simulation case study. The case
study centers around a wake turbulence event in the terminal airspace - a very common hazard for aircraft.
Additional details about this case study, as well as information about loss of separation in terminal airspace
and enroute weather event case studies can be found in a separate report.5

Wake turbulence is caused by the wake vortex produced by aircraft at the wing tips due to the pressure
di↵erences on the wing.21,22,23 The weight, wingspan, and speed of the generating aircraft determine the
initial strength and motion of the vortices; however, ambient atmosphere (wind, stability, turbulence, etc.)
dictates the eventual motion and decay rate of the vortices. The maximum core velocity of the vortex may
exceed 300 ft/sec and the induced rolling moment on an aircraft encountering the wake vortex of another
aircraft can exceed its roll control, leading to loss of control.

Even though controllers may provide wake turbulence advisories in certain situations, pilots are generally
solely responsible for maintaining adequate horizontal or vertical separation for wake turbulence avoidance.
For arrivals to and departures from controlled airports, the controller generally follows separation standards
tailored to the particular airport to mitigate potential issues. Such standards generally work well to optimize
tra�c flow while maintaining safety; however, when less-common situations occur (such as extended depar-
ture rolls, go-arounds, or unusual wind conditions), such standards may prove inadequate. One approach to
preventing mishaps under such circumstances is to provide additional information about the safety of the
airspace in the airport vicinity to both pilots and controllers, such as warnings that standard operating rules
or heuristics may not work in a particular situation.

For this case study we consider the terminal airspace of the San Francisco International Airport (SFO),
with its two sets of intersecting parallel runways, one set used for departures and the other set used for
arrivals. In our scenario, a light aircraft A1 (e.g. Piper Aztec), is waiting on runway 01L for takeo↵
clearance from tower controllers (see Fig. 3). A large aircraft A2 (e.g. Boeing 777) is coming in for a landing
on crossing runway 28L. As the scenario proceeds, the pilot of A2 decides to do a go-around right after
touching down because of the di�culties with maintaining directional control due to a strong crosswind (19
knots, coming from the north). As the aircraft accelerates again for the go-around and starts generating
lift, a region of wake turbulence is formed behind it. Due to the wind, the vortices will drift onto runways
01L and 01R, toward where aircraft A1 is waiting for takeo↵. Ordinarily, there are no issues with residual
wake turbulence in the general area of the runway intersection as landing aircraft touch down (and stop
generating lift) well before it and departing aircraft rotate (and start generating wake vortices) well after the
intersection. In this, somewhat rare, scenario a controller may not consider all of the implications of A2’s
go-around and clear A1 for departure as soon as A2 has rotated, while the region of wake turbulence is still
present (which may be particularly dangerous for the lighter A1, since it may rotate before the intersection
of the runways).

As described above, wake vortices are generated as a byproduct of an aircraft generating lift. The initial
descent rate of the vortices is determined by weight, flight speed, and wingspan of the generating aircraft
and is usually between 300 and 500 fpm for about 30 sec. The descent rate decreases and eventually reaches
zero between 500 to 900 ft below the flight path. For our model, we simplified this behavior and compute
the wake turbulence region as follows. Given the aircraft position for the past m minutes (in which the
turbulence generated before t�m has dissipated), we compute points at the wingtips at each time step, and
extend them along the line between the wingtips proportional to t� tprev for m  tprev  t, and then shift
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Figure 3. Wake turbulence scenario. Aircraft not drawn to scale.

them in the direction of the wind at tprev. The wake turbulence region is then defined by these points; this
procedure is summarized in Fig. 4, where the wake region at time t is computed based on the aircraft position
at times t, t�1, and t�2 (pt, pt�1, and pt�2, respectively). At pt, the width is equal to the distance between
the wingtips and the wake region points are placed there. At pt�1, the width of the region has become larger
than the original wingtip distance and shifted in the direction of the wind. At pt�2, the turbulence has
spread still wider and shifted further by the wind from its original location, and this continues for each past
time step (the finer the sampling time, the finer the resolution of the region). This region extends below
for 1000 feet. This approximation of the wake region is meant to be more realistic than a simple region
computed based on separation standards, but simple enough for demonstration purposes. More advanced
models, such as those in21,22,23 can be used in future work.

t

t-1

t-2

Wind

Figure 4. Computed wake turbulence region at time t.

Connecting the description of this scenario to our framework, the event e we are concerned with is whether
an aircraft enters a region of wake turbulence created by another aircraft. Given two aircraft, Te is defined
to be true when the position of the first aircraft is within the wake turbulence region of the second aircraft.
Since we have two aircraft, there are 2 di↵erent wake turbulence events we want to predict (A1 in wake of
A2, A2 in wake of A1). The safety metric in this case is computed as the distance between an aircraft and
the wake region of another aircraft.

Initially, A1 is on the runway. The time of takeo↵ clearance is unknown, and will be given once the
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Figure 5. Probability of A1 being in the wake of A2 within the next 5 minutes as a function of time.

approaching aircraft on the intersecting runways is clear. A2 is lined up for approach at about 150 knots.
As mentioned earlier, there is a wind coming from the north of 19 knots, that will be pushing the wake
turbulence region south toward A1.

The safety metric is constantly monitored, and predictions are made up through 5 minutes into the
future at a discrete time step of 10 s. From the pilot’s perspective, we compute the probability that a wake
turbulence event will happen in the next 5 minutes. Fig. 5 shows the computed probability of A1 being in
the wake region of A2 within the next 5 minutes, computed at each time. Initially, since the takeo↵ time
is unknown, the probability is zero. At 195 s, takeo↵ clearance is known and immediately the prediction
algorithm computes a high probability of encountering wake turbulence, since we know that A2 is not landing.
The probability remains high until the aircraft is expected to have moved past the region of turbulence.b

From the controller’s perspective, we can compute the probability of a wake turbulence event happening
in the next 5 minutes at every spatial position. Aggregating all that information, we can overlap trouble
spots on the controller’s view of the map. This is shown in Fig. 3 at t = 220 s. The yellow region is the
region of wake turbulence created by A2 after its missed approach, and the marked red region indicates
future locations of a wake turbulence event within the next 5 minutes.

VI. Summary and Future Work

In this paper, we presented a methodology and framework for computing safety metrics, and predicting
the occurence and timing of unsafe events in the NAS. Our approach utilizes a model-based prediction
framework that first requires o✏ine analysis and modeling of hazards, safety metrics, and thresholds. The
models are then utilized for (online) real-time monitoring and prediction. For robustness to actual operations,
which are highly stochastic, the monitoring and prediction algorithms treat uncertainty with mathematical
rigor. We demonstrated the full framework through a case study that computes the e↵ects of wake turbulence
on airspace safety.

We believe that our real-time monitoring and prediction framework will benefit many of the diverse NAS
operators. In future work, this framework can be used for several applications, such as improving shared
situational awareness through automated assessment of multiple factors for potential flight routes, minimizing
the necessity of in-flight route modification through more informed route selection, and supporting strategic
planning between users and the ATC system. Through predictive safety computation that includes rigorous
handling of uncertainty, pilots and ATC controllers can receive advance warning of precursors to unsafe
events. This enables preemptive actions that aim to avoid unsafe events altogether, rather than having
to mitigate them. In addition to the traditional NAS participants, predicted safety metrics could also be
incorporated into Unmanned Aerial System (UAS) autonomy and decision-making software, perhaps enabling
unmanned aircraft to automatically avoid unsafe NAS regions. In addition, sensitivity analysis techniques
can be used to determine the most significant contributors of uncertainty to unsafe events and thus aid in
decision-making. Finally, risk analysis methods can be used to incorporate the criticality of di↵erent hazards
(rather than treating all hazards as being equally critical to safety) and so the overall risk associated with
unsafe events can be computed. Although we present the approach here in a centralized manner, it can also
be distributed, which will allow the approach to scale easily.24 For example, each aircraft can produce a

bHere, we used N = 100 samples. With more samples, the probability curve in Fig. 5 would be smoother, and the decrease
around t = 200 s would disappear.
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probabilistic trajectory using our framework, and, at a sector level, safety metrics can be computed. This is
a function allocation problem25 and is a subject of future work.
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