75 research outputs found
Symmetric mixed states of qubits: local unitary stabilizers and entanglement classes
We classify, up to local unitary equivalence, local unitary stabilizer Lie
algebras for symmetric mixed states into six classes. These include the
stabilizer types of the Werner states, the GHZ state and its generalizations,
and Dicke states. For all but the zero algebra, we classify entanglement types
(local unitary equivalence classes) of symmetric mixed states that have those
stabilizers. We make use of the identification of symmetric density matrices
with polynomials in three variables with real coefficients and apply the
representation theory of SO(3) on this space of polynomials.Comment: 10 pages, 1 table, title change and minor clarifications for
published versio
The Parts Determine the Whole except for n-Qubit Greenberger-Horne-Zeilinger States
The generalized n-qubit Greenberger-Horne-Zeilinger (GHZ) states and their
local unitary equivalents are the only pure states of n qubits that are not
uniquely determined (among arbitrary states, pure or mixed) by their reduced
density matrices of n-1 qubits. Thus, the generalized GHZ states are the only
ones containing information at the n-party level.Comment: 4 page
Entanglement classes of symmetric Werner states
The symmetric Werner states for qubits, important in the study of quantum
nonlocality and useful for applications in quantum information, have a
surprisingly simple and elegant structure in terms of tensor products of Pauli
matrices. Further, each of these states forms a unique local unitary
equivalence class, that is, no two of these states are interconvertible by
local unitary operations.Comment: 4 pages, 1 table, additional references in version 2, revised
abstract and introduction in version 3, small clarifications for published
version in version
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube
We report the results of a multimessenger search for coincident signals from
the LIGO and Virgo gravitational-wave observatories and the partially completed
IceCube high-energy neutrino detector, including periods of joint operation
between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010
run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79
strings. We find no significant coincident events, and use the search results
to derive upper limits on the rate of joint sources for a range of source
emission parameters. For the optimistic assumption of gravitational-wave
emission energy of \,Mc at \,Hz with \,ms duration, and high-energy neutrino emission of \,erg
comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the
source rate below \,Mpcyr. We also examine
how combining information from gravitational waves and neutrinos will aid
discovery in the advanced gravitational-wave detector era
The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)
We have conducted three searches for correlations between ultra-high energy
cosmic rays detected by the Telescope Array and the Pierre Auger Observatory,
and high-energy neutrino candidate events from IceCube. Two cross-correlation
analyses with UHECRs are done: one with 39 cascades from the IceCube
`high-energy starting events' sample and the other with 16 high-energy `track
events'. The angular separation between the arrival directions of neutrinos and
UHECRs is scanned over. The same events are also used in a separate search
using a maximum likelihood approach, after the neutrino arrival directions are
stacked. To estimate the significance we assume UHECR magnetic deflections to
be inversely proportional to their energy, with values , and
at 100 EeV to allow for the uncertainties on the magnetic field
strength and UHECR charge. A similar analysis is performed on stacked UHECR
arrival directions and the IceCube sample of through-going muon track events
which were optimized for neutrino point-source searches.Comment: one proceeding, the 34th International Cosmic Ray Conference, 30 July
- 6 August 2015, The Hague, The Netherlands; will appear in PoS(ICRC2015
- âŠ