100 research outputs found

    Relationship of sleep quality and health-related quality of life in adolescents according to self- and proxy ratings: a questionnaire survey

    Get PDF
    Roeser K, Eichholz R, Schwerdtle B, Schlarb A, Kübler A. Relationship of sleep quality and health-related quality of life in adolescents according to self- and proxy ratings: a questionnaire survey. Front Psychiatry. 2012;3:76:76.Introduction: Sleep disturbances are common in adolescents and adversely affect performance, social contact, and susceptibility to stress. We investigated the hypothesis of a relationship between sleep and health-related quality of life (HRQoL), and applied self- and proxy ratings. Materials and Methods: The sample comprised 92 adolescents aged 11–17 years. All participants and their parents completed a HRQoL measure and the Sleep Disturbance Scale for Children (SDSC). Children with SDSC T-scores above the normal range (above 60) were classified as poor sleepers. Results: According to self- and proxy ratings, good sleepers reported significantly higher HRQoL than poor sleepers. Sleep disturbances were significantly higher and HRQoL significantly lower in self- as compared to parental ratings. Parent-child agreement was higher for subscales measuring observable aspects. Girls experienced significantly stronger sleep disturbances and lower self-rated HRQoL than boys. Discussion: Our findings support the positive relationship of sleep and HRQoL. Furthermore, parents significantly underestimate sleep disturbances and overestimate HRQoL in their children

    A fast and reliable method for monitoring genomic instability in the model organism Caenorhabditis elegans

    Get PDF
    The identification of genotoxic agents and their potential for genotoxic alterations in an organism is crucial for risk assessment and approval procedures of the chemical and pharmaceutical industry. Classically, testing strategies for DNA or chromosomal damage focus on in vitro and in vivo (mainly rodent) investigations. In cell culture systems, the alkaline unwinding (AU) assay is one of the well-established methods for detecting the percentage of double-stranded DNA (dsDNA). By establishing a reliable lysis protocol, and further optimization of the AU assay for the model organism Caenorhabditis elegans (C. elegans), we provided a new tool for genotoxicity testing in the niche between in vitro and rodent experiments. The method is intended to complement existing testing strategies by a multicellular organism, which allows higher predictability of genotoxic potential compared to in vitro cell line or bacterial investigations, before utilizing in vivo (rodent) investigations. This also allows working within the 3R concept (reduction, refinement, and replacement of animal experiments), by reducing and possibly replacing animal testing. Validation with known genotoxic agents (bleomycin (BLM) and tert-butyl hydroperoxide (tBOOH)) proved the method to be meaningful, reproducible, and feasible for high-throughput genotoxicity testing, and especially preliminary screening

    Vegan Diet and Bone Health—Results from the Cross-Sectional RBVD Study

    Get PDF
    Scientific evidence suggests that a vegan diet might be associated with impaired bone health. Therefore, a cross-sectional study (n = 36 vegans, n = 36 omnivores) was used to investigate the associations of veganism with calcaneal quantitative ultrasound (QUS) measurements, along with the investigation of differences in the concentrations of nutrition- and bone-related biomarkers between vegans and omnivores. This study revealed lower levels in the QUS parameters in vegans compared to omnivores, e.g., broadband ultrasound attenuation (vegans: 111.8 ± 10.7 dB/MHz, omnivores: 118.0 ± 10.8 dB/MHz, p = 0.02). Vegans had lower levels of vitamin A, B2, lysine, zinc, selenoprotein P, n-3 fatty acids, urinary iodine, and calcium levels, while the concentrations of vitamin K1, folate, and glutamine were higher in vegans compared to omnivores. Applying a reduced rank regression, 12 out of the 28 biomarkers were identified to contribute most to bone health, i.e., lysine, urinary iodine, thyroid-stimulating hormone, selenoprotein P, vitamin A, leucine, α-klotho, n-3 fatty acids, urinary calcium/magnesium, vitamin B6, and FGF23. All QUS parameters increased across the tertiles of the pattern score. The study provides evidence of lower bone health in vegans compared to omnivores, additionally revealing a combination of nutrition-related biomarkers, which may contribute to bone health. Further studies are needed to confirm these findings

    Vegan Diet and Bone Health—Results from the Cross-Sectional RBVD Study

    Get PDF
    Scientific evidence suggests that a vegan diet might be associated with impaired bone health. Therefore, a cross-sectional study (n = 36 vegans, n = 36 omnivores) was used to investigate the associations of veganism with calcaneal quantitative ultrasound (QUS) measurements, along with the investigation of differences in the concentrations of nutrition- and bone-related biomarkers between vegans and omnivores. This study revealed lower levels in the QUS parameters in vegans compared to omnivores, e.g., broadband ultrasound attenuation (vegans: 111.8 ± 10.7 dB/MHz, omnivores: 118.0 ± 10.8 dB/MHz, p = 0.02). Vegans had lower levels of vitamin A, B2, lysine, zinc, selenoprotein P, n-3 fatty acids, urinary iodine, and calcium levels, while the concentrations of vitamin K1, folate, and glutamine were higher in vegans compared to omnivores. Applying a reduced rank regression, 12 out of the 28 biomarkers were identified to contribute most to bone health, i.e., lysine, urinary iodine, thyroid-stimulating hormone, selenoprotein P, vitamin A, leucine, α-klotho, n-3 fatty acids, urinary calcium/magnesium, vitamin B6, and FGF23. All QUS parameters increased across the tertiles of the pattern score. The study provides evidence of lower bone health in vegans compared to omnivores, additionally revealing a combination of nutrition-related biomarkers, which may contribute to bone health. Further studies are needed to confirm these findings

    Trapped in the prison of the mind: notions of climate-induced (im)mobility decision-making and wellbeing from an urban informal settlement in Bangladesh

    Get PDF
    The concept of Trapped Populations has until date mainly referred to people ‘trapped’ in environmentally high-risk rural areas due to economic constraints. This article attempts to widen our understanding of the concept by investigating climate-induced socio-psychological immobility and its link to Internally Displaced People’s (IDPs) wellbeing in a slum of Dhaka. People migrated here due to environmental changes back on Bhola Island and named the settlement Bhola Slum after their home. In this way, many found themselves ‘immobile’ after having been mobile—unable to move back home, and unable to move to other parts of Dhaka, Bangladesh, or beyond. The analysis incorporates the emotional and psychosocial aspects of the diverse immobility states. Mind and emotion are vital to better understand people’s (im)mobility decision-making and wellbeing status. The study applies an innovative and interdisciplinary methodological approach combining Q-methodology and discourse analysis (DA). This mixed-method illustrates a replicable approach to capture the complex state of climate-induced (im)mobility and its interlinkages to people’s wellbeing. People reported facing non-economic losses due to the move, such as identity, honour, sense of belonging and mental health. These psychosocial processes helped explain why some people ended up ‘trapped’ or immobile. The psychosocial constraints paralysed them mentally, as well as geographically. More empirical evidence on how climate change influences people’s wellbeing and mental health will be important to provide us with insights in how to best support vulnerable people having faced climatic impacts, and build more sustainable climate policy frameworks

    Climate change adaptation in conflict-affected countries:A systematic assessment of evidence

    Get PDF
    People affected by conflict are particularly vulnerable to climate shocks and climate change, yet little is known about climate change adaptation in fragile contexts. While climate events are one of the many contributing drivers of conflict, feedback from conflict increases vulnerability, thereby creating conditions for a vicious cycle of conflict. In this study, we carry out a systematic review of peer-reviewed literature, taking from the Global Adaptation Mapping Initiative (GAMI) dataset to documenting climate change adaptation occurring in 15 conflict-affected countries and compare the findings with records of climate adaptation finance flows and climate-related disasters in each country. Academic literature is sparse for most conflict-affected countries, and available studies tend to have a narrow focus, particularly on agriculture-related adaptation in rural contexts and adaptation by low-income actors. In contrast, multilateral and bilateral funding for climate change adaptation addresses a greater diversity of adaptation needs, including water systems, humanitarian programming, and urban areas. Even among the conflict-affected countries selected, we find disparity, with several countries being the focus of substantial research and funding, and others seeing little to none. Results indicate that people in conflict-affected contexts are adapting to climate change, but there is a pressing need for diverse scholarship across various sectors that documents a broader range of adaptation types and their results

    Cytotoxicity and ion release of alloy nanoparticles

    Get PDF
    It is well-known that nanoparticles could cause toxic effects in cells. Alloy nanoparticles with yet unknown health risk may be released from cardiovascular implants made of Nickel–Titanium or Cobalt–Chromium due to abrasion or production failure. We show the bio-response of human primary endothelial and smooth muscle cells exposed to different concentrations of metal and alloy nanoparticles. Nanoparticles having primary particle sizes in the range of 5–250 nm were generated using laser ablation in three different solutions avoiding artificial chemical additives, and giving access to formulations containing nanoparticles only stabilized by biological ligands. Endothelial cells are found to be more sensitive to nanoparticle exposure than smooth muscle cells. Cobalt and Nickel nanoparticles caused the highest cytotoxicity. In contrast, Titanium, Nickel–Iron, and Nickel–Titanium nanoparticles had almost no influence on cells below a nanoparticle concentration of 10 μM. Nanoparticles in cysteine dissolved almost completely, whereas less ions are released when nanoparticles were stabilized in water or citrate solution. Nanoparticles stabilized by cysteine caused less inhibitory effects on cells suggesting cysteine to form metal complexes with bioactive ions in media

    Acute health risks related to the presence of cyanogenic glycosides in raw apricot kernels and products derived from raw apricot kernels

    Get PDF
    Amygdalin is the major cyanogenic glycoside present in apricot kernels and is degraded to cyanide by chewing or grinding. Cyanide is of high acute toxicity in humans. The lethal dose is reported to be 0.5\u20133.5 mg/kg body weight (bw). An acute reference dose (ARfD) of 20 lg/kg bw was derived from an exposure of 0.105 mg/kg bw associated with a non-toxic blood cyanide level of 20 micro mol (lM), and applying an uncertainty factor of 1.5 to account for toxicokinetic and of 3.16 to account for toxicodynamic inter-individual differences. In the absence of consumption data and thus using highest intakes of kernels promoted (10 and 60 kernels/day for the general population and cancer patients, respectively), exposures exceeded the ARfD 17\u2013413 and 3\u201371 times in toddlers and adults, respectively. The estimated maximum quantity of apricot kernels (or raw apricot material) that can be consumed without exceeding the ARfD is 0.06 and 0.37 g in toddlers and adults, respectively. Thus the ARfD would be exceeded already by consumption of one small kernel in toddlers, while adults could consume three small kernels. However, consumption of less than half of a large kernel could already exceed the ARfD in adults

    Deletions at 14q in malignant mesothelioma detected by microsatellite marker analysis

    Get PDF
    Previous molecular cytogenetic studies by comparative genomic hybridization (CGH) on primary tumours of human malignant mesothelioma have revealed that loss of genetic material at chromosome 14q is one of the most frequently occurring aberrations. Here we further verify the frequency and pattern of deletions at 14q in mesothelioma. A high-resolution deletion mapping analysis of 23 microsatellite markers was performed on 18 primary mesothelioma tumours. Eight of these had previously been analysed by CGH. Loss of heterozygosity or allelic imbalance with at least one marker was detected in ten of 18 tumours (56%). Partial deletions of varying lengths were more common than loss of all informative markers, which occurred in only one tumour. The highest number of tumours with deletions at a specific marker was detected at 14q11.1–q12 with markers D14S283 (five tumours), D14S972 (seven tumours) and D14S64 (five tumours) and at 14q23–q24 with markers D14S258 (five tumours), D14S77 (five tumours) and D14S284 (six tumours). We conclude from these data that genomic deletions at 14q are more common than previously reported in mesothelioma. Furthermore, confirmation of previous CGH results was obtained in all tumours but one. This tumour showed deletions by allelotyping, but did not show any DNA copy number change at 14q by CGH. Although the number of tumours allelotyped was small and the deletion pattern was complex, 14q11.1–q12 and 14q23–q24 were found to be the most involved regions in deletions. These regions provide a good basis for further molecular analyses and may highlight chromosomal locations of tumour suppressor genes that could be important in the tumorigenesis of malignant mesothelioma. © 1999 Cancer Research Campaig

    Structure, Function, and Evolution of the Thiomonas spp. Genome

    Get PDF
    Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live
    corecore