58 research outputs found

    Disinfection By-Products in Drinking Water and Bladder Cancer:Evaluation of Risk Modification by Common Genetic Polymorphisms in Two Case-Control Studies

    Get PDF
    BACKGROUND: By-products are formed when disinfectants react with organic matter in source water. The most common class of disinfection by-products, trihalomethanes (THMs), have been linked to bladder cancer. Several studies have shown exposure–response associations with THMs in drinking water and bladder cancer risk. Few epidemiologic studies have evaluated gene–environment interactions for total THMs (TTHMs) with known bladder cancer susceptibility variants. OBJECTIVES: In this study, we investigated the combined effect on bladder cancer risk contributed by TTHMs, bladder cancer susceptibility variants identified through genome-wide association studies, and variants in several candidate genes. METHODS: We analyzed data from two large case–control studies—the New England Bladder Cancer Study ([Formula: see text] cases/1,162 controls), a population-based study, and the Spanish Bladder Cancer Study ([Formula: see text] cases/772 controls), a hospital-based study. Because of differences in exposure distributions and metrics, we estimated effects of THMs and genetic variants within each study separately using adjusted logistic regression models to calculate odds ratios (ORs) and 95% confidence intervals (CI) with and without interaction terms, and then combined the results using meta-analysis. RESULTS: Of the 16 loci showing strong evidence of association with bladder cancer, rs907611 at 11p15.5 [leukocyte-specific protein 1 (LSP1 region)] showed the strongest associations in the highest exposure category in each study, with evidence of interaction in both studies and in meta-analysis. In the highest exposure category, we observed [Formula: see text] (95% CI: 1.17, 2.34, [Formula: see text]) for those with the rs907611-GG genotype and [Formula: see text]. No other genetic variants tested showed consistent evidence of interaction. DISCUSSION: We found novel suggestive evidence for a multiplicative interaction between a putative bladder carcinogen, TTHMs, and genotypes of rs907611. Given the ubiquitous exposure to THMs, further work is needed to replicate and extend this finding and to understand potential molecular mechanisms. https://doi.org/10.1289/EHP989

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

    Get PDF
    We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis

    Large-Scale Pathway-Based Analysis of Bladder Cancer Genome-Wide Association Data from Five Studies of European Background

    Get PDF
    Pathway analysis of genome-wide association studies (GWAS) offer a unique opportunity to collectively evaluate genetic variants with effects that are too small to be detected individually. We applied a pathway analysis to a bladder cancer GWAS containing data from 3,532 cases and 5,120 controls of European background (n = 5 studies). Thirteen hundred and ninety-nine pathways were drawn from five publicly available resources (Biocarta, Kegg, NCI-PID, HumanCyc, and Reactome), and we constructed 22 additional candidate pathways previously hypothesized to be related to bladder cancer. In total, 1421 pathways, 5647 genes and ∼90,000 SNPs were included in our study. Logistic regression model adjusting for age, sex, study, DNA source, and smoking status was used to assess the marginal trend effect of SNPs on bladder cancer risk. Two complementary pathway-based methods (gene-set enrichment analysis [GSEA], and adapted rank-truncated product [ARTP]) were used to assess the enrichment of association signals within each pathway. Eighteen pathways were detected by either GSEA or ARTP at P≤0.01. To minimize false positives, we used the I2 statistic to identify SNPs displaying heterogeneous effects across the five studies. After removing these SNPs, seven pathways (‘Aromatic amine metabolism’ [PGSEA = 0.0100, PARTP = 0.0020], ‘NAD biosynthesis’ [PGSEA = 0.0018, PARTP = 0.0086], ‘NAD salvage’ [PARTP = 0.0068], ‘Clathrin derived vesicle budding’ [PARTP = 0.0018], ‘Lysosome vesicle biogenesis’ [PGSEA = 0.0023, PARTP<0.00012], ’Retrograde neurotrophin signaling’ [PGSEA = 0.00840], and ‘Mitotic metaphase/anaphase transition’ [PGSEA = 0.0040]) remained. These pathways seem to belong to three fundamental cellular processes (metabolic detoxification, mitosis, and clathrin-mediated vesicles). Identification of the aromatic amine metabolism pathway provides support for the ability of this approach to identify pathways with established relevance to bladder carcinogenesis

    Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of european ancestry

    Get PDF
    Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P &lt; 1 7 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 7 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 7 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P 64 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer

    Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of european ancestry

    Get PDF

    Detectable clonal mosaicism and its relationship to aging and cancer

    Get PDF
    In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases

    Using hierarchical cluster models to systematically identify groups of jobs with similar occupational questionnaire response patterns to assist rule-based expert exposure assessment in population-based studies

    No full text
    OBJECTIVES: Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. METHODS: Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m(-3) respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters' homogeneity (defined as >75% with the same estimate) was examined compared to a dichotomized probability estimate (<5 versus ≥5%; <50 versus ≥50%). Second, for the ordinal probability metric and continuous intensity and frequency metrics, we calculated the intraclass correlation coefficients (ICCs) between each job's estimate and the mean estimate for all jobs within the cluster. RESULTS: Within-cluster homogeneity increased when more clusters were used. For example, ≥80% of the clusters were homogeneous when 500 clusters were used. Similarly, ICCs were generally above 0.7 when ≥200 clusters were used, indicating minimal within-cluster variability. The most within-cluster variability was observed for the frequency metric (ICCs from 0.4 to 0.8). We estimated that using an expert to assign exposure at the cluster-level assignment and then to review each job in non-homogeneous clusters would require ~2000 decisions per expert, in contrast to evaluating 4255 unique questionnaire patterns or 14983 individual jobs. CONCLUSIONS: This proof-of-concept shows that using cluster models as a data reduction step to identify jobs with similar response patterns prior to obtaining expert ratings has the potential to aid rule-based assessment by systematically reducing the number of exposure decisions needed. While promising, additional research is needed to quantify the actual reduction in exposure decisions and the resulting homogeneity of exposure estimates within clusters for an exposure assessment effort that obtains cluster-level expert assessments as part of the assessment process
    corecore