157 research outputs found

    Lock and Dam No. 26 R, Lock Cofferdam, Construction Sequencing

    Get PDF
    Construction of a new lock and dam to replace existing Locks and Dam No. 26 required construction to be accomplished in three separate stages. Each portion of the new structure would be constructed inside cellular cofferdams. The construction of each cofferdam would require model tests to determine compatibility with design flow requirements relative to constructability of coffercells, scour of riverbed material, and navigation of river vessels. Compatibility of the lock cofferdam geometry was verified using model studies along with sequence for construction of the cofferdam cells. Construction of the second stage cofferdam was successfully completed in December 1985, followed by dewatering and construction of the 1,200 foot lock structure

    Protracted Protection to \u3ci\u3ePlasmodium berghei\u3c/i\u3e Malaria Is Linked to Functionally and Phenotypically Heterogeneous Liver Memory CD\u3csup\u3e8+\u3c/sup\u3e T Cells\u3csup\u3e1\u3c/sup\u3e

    Get PDF
    We previously demonstrated that protection induced by radiation-attenuated (y) Plasmodium berghei sporozoites is linked to MHC class I-restricted CD8+ T cells specific for exoerythrocytic-stage Ags, and that activated intrahepatic memory CD8+ T cells are associated with protracted protection. In this study, we further investigated intrahepatic memory CD8+ T cells to elucidate mechanisms required for their maintenance. Using phenotypic markers indicative of activation (CD44, CD45RB), migration (CD62L), and IFN-y production, we identified two subsets of intrahepatic memory CD8+ T cells: the CD44highCD45RBlowCD62LlowCD122low phenotype, representing the dominant effector memory set, and the CD44highCD45RBhighCD62Llow/highCD122high phenotype, representing the central memory set. Only the effector memory CD8+ T cells responded swiftly to sporozoite challenge by producing sustained IFN-y; the central memory T cells responded with delay, and the IFN-y reactivity was short-lived. In addition, the subsets of liver memory CD8+ T cells segregated according to the expression of CD122 (IL-15R) in that only the central memory CD8+ T cells were CD122high, whereas the effector memory CD8+ T cells were CD122low. Moreover, the effector memory CD8+ T cells declined as protection waned in mice treated with primaquine, a drug that interferes with the formation of liver-stage Ags. We propose that protracted protection induced by P. berghei radiation-attenuated sporozoites depends in part on a network of interactive liver memory CD8+ T cell subsets, each representing a different phase of activation or differentiation, and the balance of which is profoundly affected by the repository of liver-stage Ag and IL-15

    Planned Marketing Adaptation and Multinationals' Choices Between Acquisitions and Greenfields

    Get PDF
    International marketing studies have extensively examined the antecedents of firms' marketing standardization/ adaptation decisions. However, it is unclear whether such decisions, once planned, codetermine the choice between buying and building foreign subsidiaries. Analyzing a sample of 150 foreign entries by Dutch firms, the authors find that the level of marketing adaptation planned for a wholly owned subsidiary is positively related to the likelihood that the subsidiary will be established through an acquisition rather than through a greenfield investment. Moreover, the authors find substantial evidence that this positive relationship is stronger for firms that (1) are establishing relatively larger subsidiaries, (2) have less experience with the industry entered, or (3) are entering less developed countries. The findings show that firms pursuing higher levels of marketing adaptation assign more value to the marketing adaptation advantages of acquisitions over greenfields, especially if the risks associated with implementing the planned adaptation level are high. In addition, firms typically strive for a fit between their international marketing strategy and their mode of foreign establishment. (authors' abstract

    Reaction rates and transport in neutron stars

    Full text link
    Understanding signals from neutron stars requires knowledge about the transport inside the star. We review the transport properties and the underlying reaction rates of dense hadronic and quark matter in the crust and the core of neutron stars and point out open problems and future directions.Comment: 74 pages; commissioned for the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action MP1304; version 3: minor changes, references updated, overview graphic added in the introduction, improvements in Sec IV.A.

    Subcellular trafficking of the substrate transporters GLUT4 and CD36 in cardiomyocytes

    Get PDF
    Cardiomyocytes use glucose as well as fatty acids for ATP production. These substrates are transported into the cell by glucose transporter 4 (GLUT4) and the fatty acid transporter CD36. Besides being located at the sarcolemma, GLUT4 and CD36 are stored in intracellular compartments. Raised plasma insulin concentrations and increased cardiac work will stimulate GLUT4 as well as CD36 to translocate to the sarcolemma. As so far studied, signaling pathways that regulate GLUT4 translocation similarly affect CD36 translocation. During the development of insulin resistance and type 2 diabetes, CD36 becomes permanently localized at the sarcolemma, whereas GLUT4 internalizes. This juxtaposed positioning of GLUT4 and CD36 is important for aberrant substrate uptake in the diabetic heart: chronically increased fatty acid uptake at the expense of glucose. To explain the differences in subcellular localization of GLUT4 and CD36 in type 2 diabetes, recent research has focused on the role of proteins involved in trafficking of cargo between subcellular compartments. Several of these proteins appear to be similarly involved in both GLUT4 and CD36 translocation. Others, however, have different roles in either GLUT4 or CD36 translocation. These trafficking components, which are differently involved in GLUT4 or CD36 translocation, may be considered novel targets for the development of therapies to restore the imbalanced substrate utilization that occurs in obesity, insulin resistance and diabetic cardiomyopathy

    Profiles of glucose metabolism in different prediabetes phenotypes, classified by fasting glycemia, 2-hour OGTT, glycated hemoglobin, and 1-hour OGTT:An IMI DIRECT study

    Get PDF
    Differences in glucose metabolism among categories of prediabetes have not been systematically investigated. In this longitudinal study, participants (N = 2,111) underwent a 2-h 75-g oral glucose tolerance test (OGTT) at baseline and 48 months. HbA1c was also measured. We classified participants as having isolated prediabetes defect (impaired fasting glucose [IFG], impaired glucose tolerance [IGT], or HbA1c indicative of prediabetes [IA1c]), two defects (IFG+IGT, IFG+IA1c, or IGT+IA1c), or all defects (IFG+IGT+IA1c). β-Cell function (BCF) and insulin sensitivity were assessed from OGTT. At baseline, in pooling of participants with isolated defects, they showed impairment in both BCF and insulin sensitivity compared with healthy control subjects. Pooled groups with two or three defects showed progressive further deterioration. Among groups with isolated defect, those with IGT showed lower insulin sensitivity, insulin secretion at reference glucose (ISRr), and insulin secretion potentiation (P &lt; 0.002). Conversely, those with IA1c showed higher insulin sensitivity and ISRr (P &lt; 0.0001). Among groups with two defects, we similarly found differences in both BCF and insulin sensitivity. At 48 months, we found higher type 2 diabetes incidence for progressively increasing number of prediabetes defects (odds ratio &gt;2, P &lt; 0.008). In conclusion, the prediabetes groups showed differences in type/degree of glucometabolic impairment. Compared with the pooled group with isolated defects, those with double or triple defect showed progressive differences in diabetes incidence.</p

    Protective Immunity Induced with the RTS,S/AS Vaccine Is Associated with IL-2 and TNF-α Producing Effector and Central Memory CD4+ T Cells

    Get PDF
    A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP)-specific CD4+ T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (TE/EM) and/or central memory (TCM) CD4+ T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both TE/EM and TCM cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4+ TE/EM cells and of CD4+ TCM cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4+ T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4+ TE/EM cells and of CD4+ TE/EM cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both TE/EM and TCM cells are major producers of IL-2

    Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes:An IMI-DIRECT study

    Get PDF
    AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk

    Protective immunity to pre-erythrocytic stage malaria

    Get PDF
    The development of a vaccine against malaria is a major research priority given the burden of disease, death and economic loss inflicted upon the tropical world by this parasite. Despite decades of effort, however, a vaccine remains elusive. The best candidate is a subunit vaccine termed RTS,S but this provides only partial protection against clinical disease. This review examines what is known about protective immunity against pre-erythrocytic stage malaria by considering the humoral and T cell-mediated immune responses that are induced by attenuated sporozoites and by the RTS,S vaccine. On the basis of these observations a set of research priorities are defined that are crucial for the development of a vaccine capable of inducing long-lasting and high-grade protection against malaria
    corecore