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1. Introduction

Myocardial metabolic remodeling is central to the pathogenesis
of cardiac diseases such as ventricular hypertrophy and diabetic
cardiomyopathy. To produce energy, the heart utilizes mainly long-
chain fatty acids (FAs) and glucose, and minor quantities of lactate
and ketone bodies [1]. Under normal conditions, the majority of the
acetyl-CoA that enters the Krebs cycle is generated by b-oxidation of
FA, while about a third is derived from oxidation of pyruvate, which
is the product of glycolysis [2]. The shift in oxidation towards FA, at
the cost of glucose, that occurs in type 2 diabetes is well documen-
ted [3]. Less studied is the mechanism by which diabetes affects
morphology and structure of the heart. However, there are a number
of reports that link type 2 diabetes to a disproportionate increase in
left ventricular wall mass [4,5]. At present, metabolic disturbances
due to lipid overload are thought to be the underlying cause of
cardiac hypertrophy in type 2 diabetes.
2. Fatty acid uptake and hyperlypidemia

In the heart FAs are the substrate for b-oxidation, and they
cover 60–70% of the energy needed for the generation of ATP.
ll rights reserved.

þ31 433884574.

rkx).
Since the heart must respond to continuously changing energy
demands but has no large capacity for storage of either FA or
glucose, substrate uptake must match energy demands. FA can be
taken up by passive diffusion (20%) although most of the transport
is protein-mediated (80%) [6]. This protein-mediated transport of FA
depends largely on the plasma membrane transporter CD36 and the
plasmalemmal fatty acid-binding protein (FABPpm) [7].

The FA transporter CD36 is a 472-amino acid (88 kDa) protein
that has a hairpin membrane topology with two transmembrane
spanning regions, with both the NH2 and the COOH termini as
short segments in the cytoplasm [8]. The current knowledge on
its structure has been extensively reviewed by Glatz et al. [9].
In cardiac myocytes of CD36 knockout (CD36KO) mice, insulin
stimulation of FA uptake was markedly impaired (þ21%) com-
pared with wild type mice (þ60%) [10]. These reductions in FA
uptake also contributed to altered rates of FA metabolism. For
example, in working hearts, FA oxidation was 40–60% lower in
CD36KO than in WT mice [11,12]. In both heart and skeletal
muscle FA uptake rates have been found to run in parallel with
the expression level of CD36 [9]. Thus, CD36 overexpression
results in elevated rates of FA uptake [13] whereas CD36KO
or knockdown impairs the transport of FA across the plasma
membrane [14]. It is remarkable that Asian and African individuals
relatively frequently have a genetic CD36 deficiency. CD36 deficiency
showed some features of the ‘metabolic syndrome’. Middle
aged patients had significantly higher plasma triacylglycerol
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Fig. 1. Regulation of long-chain fatty acid (FA) uptake and oxidation in cardiomyocytes. FAs are imported from the blood facilitated by CD36 or by passive diffusion. FAs

then are activated by ACS to acyl-CoA. Acyl-CoA is converted into acyl-carnitine by carnitine palmitoyl transferase I (CPT-1). Acyl-carnitine is translocated into the

mitochondria by carnitine acyl translocase (CAT). In the mitochondrial matrix, CPT-II regenerates acyl-CoA, which enters b-oxidation and is further processed to ATP.

Besides oxidation, cytoplasmic FA can be stored or can interact with peroxisome proliferator-activated receptors (PPARs) to stimulate the expression of genes coding for

lipid metabolic enzymes and transporters.
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concentrations, lower high-density lipoprotein cholesterol levels,
higher plasma glucose levels and higher blood pressure than
aged-matched control subjects. The cardiovascular pathophysiol-
ogy of these individuals underscores the importance of CD36 for
transport of FA into cardiomyocytes [15].

During increased contraction or insulin stimulation, CD36
translocates from endosomal pools to the plasma membrane to
facilitate FA uptake [16]. In the cytoplasm FA bind to cytosolic
fatty acid-binding protein (FABPc) after which they are trans-
ported through the cytoplasm to the mitochondria. Then, fatty
acyl-CoA synthetase (ACS) present at the outer mitochondrial
membrane will esterify FA into acyl-CoA (Fig. 1) [17]. At the outer
membrane of the mitochondria, acyl-CoA is converted into acyl-
carnitine by carnitine palmitoyl transferase I (CPT-I) [18,19].
Translocation of acyl-CoA across the inner mitochondrial mem-
brane is facilitated by carnitine acyl translocase (CAT). In the
mitochondrial matrix, carnitine palmitoyl transferase II (CPT-II)
regenerates acyl-CoA, which then undergoes b-oxidation (Fig. 1)
[18,19]. These transferase reactions are rate-limiting steps in
oxidation. Furthermore, FA oxidation rates are directly dependent
on myocardial substrate availability, which is regulated primarily
by levels of malonyl-CoA, a physiological inhibitor of CPT-I [20].

2.1. Hyperlipidemia and diabetes

The diabetic state is characterized by hyperinsulinemia, late-
onset hyperglycemia and hyperlipidemia; the latter as a result of
increased levels of triacylglyceroles and (non-esterified) FA [21].
In advanced diabetes, the combined effects of high levels of
circulating FA and of insulin resistance drive cardiomyocytes
towards an almost exclusive use of FA to generate ATP.

Diabetic cardiomyopathy is associated with an increase in FA
uptake and oxidation, and an increase in cytoplasmic FA concen-
tration [22]. Cardiomyocytes respond to increased FA concentra-
tion by upregulating the expression of the enzymes necessary for
their utilization through mitochondrial b-oxidation [23]. These
enzymes are under transcriptional control of PPARa and PPARb/d
(see below). In addition, diabetic FA levels inhibit pyruvate dehy-
drogenase, which impairs myocardial energy production and leads to
accumulation of both glycolytic intermediates and intracellular lipids,
because FA oxidation then exceeds the mitochondrial capacity [24].

2.2. The role of PPARs

Cardiac FA utilization is largely controlled by metabolic gene
programs that are under the control of nuclear receptors that bind
FA or its derivatives [25,26]. Peroxisome proliferator-activated
receptors (PPARs) are members of a nuclear receptor superfamily
and some of them function as FA sensors and as transcriptional
regulators of FA uptake and oxidation [27]. Upon activation PPARs
form heterodimers with retinoid X receptors (RXRs) and then
bind to the so-called PPAR responsive elements (PPREs) located in
50 upstream regions of a number of genes encoding metabolic
enzymes (Fig. 1) [28]. The binding to PPREs is enhanced by
peroxisome proliferator-activated receptor gamma coactivator-1
(PGC-1). Once bound to the PPRE, the PPAR/RXR/PGC-1 complex
increases the rate of transcription of, amongst others, genes
involved in FA transport and oxidation [29]. For instance, PPARa
upregulates the expression of FA transporters such as fatty acid-
transport protein (FATP). CD36, however, has no PPRE in the
upstream promoter region, but still is activated by PPAR ligands,
probably in an indirect manner [30]. PPARa also induces the
synthesis of metabolic enzymes of the b-oxidation pathway, such
as CYP4A, and CPT-I [23,31,32]. In the promoter region of CPT-I
and CYP4A functional PPREs have been identified. On the one
hand, under standard conditions, PPARa stimulates FA oxidation,
on the other hand, under diabetic conditions, PPARa agonists,
such as fibrates, down-regulate FA oxidation and upregulate
glucose oxidation. Such a shift towards glucose utilization may
be due to normalization of circulating triacylglyceroles and FA
concentrations, as observed in db/db mice and in diabetic Zucker
rats [33,34]. The importance of the whole body effects seems to
be underscored by results in transgenic mice with cardiac specific
PPARa overexpression. In the hearts of these mice, an increase in
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FA and a decrease in glucose utilization was found [35], an effect
that was exacerbated by a high fat diet [36]. In line with this,
PPARaKO mice have been generated and found to display no
severe phenotypic defects. However, the hearts of these mice
exhibit serious metabolic abnormalities. When challenged by a
high cytoplasmic FA concentration, these mice are unable to
upregulate cardiac transporters and enzymes crucial for FA
metabolism. The mice accumulate myocardial lipids, due to a
lower FA oxidation rate but they are resistant to high fat-induced
insulin resistance [37,38]. Interestingly, the absence of PPARa was
found to result in a decreased expression of malonyl-CoA carbox-
ylase, leading to increased malonyl-CoA concentrations, which
strongly inhibit FA oxidation [39]. The complex picture that arises
from the available data establishes the role of PPARa in cardiac
metabolic homeostasis, but at the same time demands further
study. Such studies have to include the other PPAR types, in
particular PPARb/d, since these are also highly expressed in cardiac
myocytes and increasing evidence points towards a significant role
of other PPAR types in myocardial lipid homeostasis [40].

2.3. CD36 relocation

Exposure to a high fat diet induces cardiac contractile dysfunc-
tion, which is associated with a permanent relocation of CD36 to
the plasma membrane [41]. Furthermore, relocation of CD36
appears to be a general phenomenon in insulin resistant hearts
[42], and precedes cardiac contractile dysfunction [41]. Also, in
skeletal muscle biopsies from type 2 diabetic subjects, CD36 was
relocated to the sarcolemma, and this increased sarcolemmal
localization of CD36 is closely correlated with muscular triacyl-
glycerol accumulation [43].

This raises the question what mechanism underlies the
continuous presence of CD36 at the cardiac plasma membrane
in case of a high fat diet. Cardiac CD36 is stored in endosomal
storage pools that are regulated by AMP-activated kinase (AMPK)
and PI3-kinase (PI3K)-Akt, respectively. Activation of AMPK is
critical for contraction induced CD36 translocation to the plasma
membrane, and activation of PI3K-Akt is critical for insulin-
induced CD36 translocation (reviewed in [9]). In rats on a high
fat diet, cardiac basal Akt phosphorylation was elevated, whereas
insulin-stimulated Akt phosphorylation, CD36 translocation, and
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Fig. 2. Schematic depiction of consequences of increased FA uptake by cardiomyocyt
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basal Akt phosphorylation), which leads to an even further increase in cellular FA upt

leading to dysfunction and oxygen radical production. Eventually, this results in cytoc
FA uptake each were decreased [41]. However, AMPK activity was
not affected by this diet. These observations suggest that
increased basal Akt activity may contribute to the continuous
presence of CD36 at the plasma membrane in hearts during high
fat diet feeding (Fig. 2). Another potential mechanism to stimulate
relocation of CD36 to the plasma membrane is via PPARa and
PPARb/d activation (Fig. 2). It has been shown that these PPARs
are able to upregulate FA uptake and oxidation in the heart by
inducing the translocation of CD36 to the plasma membrane.
Importantly, observed effects of continuous PPAR activation were
not related to AMPK activation or plasma FA concentrations [44].
Furthermore, oral treatment with the PPARd agonist GW501516
was associated with large increases in total muscle CD36 protein
content, but not diacylglycerol or ceramide contents [45].
Together, this indicates that PPAR activation can induce both
CD36 expression and its relocation to the plasma membrane.
3. Insulin signaling and hyperlipidemia

Insulin-stimulated glucose and FA uptake is initiated by
binding of insulin to the a-subunit of the insulin receptor at the
sarcolemma [46]. This induces a conformational change resulting
in the autophosphorylation of a number of tyrosine residues
present in the b-subunits [47]. Tyrosine autophosphorylation
leads to activation of the receptor’s intrinsic tyrosine kinase
activity, which results in phosphorylation of the two insulin
receptor substrates IRS-1 and IRS-2. Phosphorylated IRS1/2 then
binds and activates the regulatory subunit of phosphotidylinositol
3-kinase (PI3K) to produce phosphatidylinositol 3,4,5-triphos-
phate, and activate phosphoinositide-dependent protein kinases,
kinase B/Akt, 3-phosphoinositide-dependent kinase-1 (PDK1), as
well as the atypical protein kinase C isoforms z and l [46,48,49].
PDK1 and PKC z/l are necessary for both GLUT4 [50,51] and CD36
[52] translocation, likely via activation of vesicle-activated mem-
brane protein-2 (VAMP2), to ensure that both transporters
are specifically delivered to the sarcolemma, and not to other
subcellular membrane systems [53]. Additionally, activated Akt
phosphorylates and inhibits its 160 kDa substrate (AS160),
thereby inducing GLUT4 translocation from the intracellular pools
to the sarcolemma [50]. In addition to the effect of insulin on
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GLUT4, insulin receptor signaling also affects CD36-mediated FA
uptake [54,55]. Whether AS160 also plays a role in insulin-
stimulated CD36 translocation is not yet investigated. However,
pharmacological experiments and studies in Akt2KO mice suggest
that in the heart the CD36 translocation pathway largely parallels
the regulation of GLUT4 translocation [9].

The role of several proteins of the insulin-GLUT4/CD36 cascade
has been tested in transgenic mouse models. Cardiomyocyte-
specific insulin receptor knockout mice (CIRKO) displayed
decreased glucose and FA oxidation and mitochondrial dysfunc-
tion [56]. Deletion of the Akt2 gene resulted in insulin resistance
and type 2 diabetes [57]. Finally, conditional mouse models have
been generated that resulted in an up- or down-regulation of PI3K
and its downstream effector PDK1, linking the metabolic state to
changes in heart morphology [58,59]. These mouse models
confirm the complexity and intrinsic fine-tuning of the insulin-
initiated pathway that leads to cardiac substrate uptake.
However, the precise nature of the crosstalk between the pathways
directing glucose and FA uptake still has to be elucidated.

3.1. Insulin resistance

Insulin resistance is a risk factor of left ventricular dysfunction
and heart failure [60], and is one of the hallmarks of type
2 diabetes [61,62]. It is associated with hyperinsulinemia and
hyperglycemia. However, despite whole body hyperinsulinemia
and hyperglycemia, the diabetic heart relies almost entirely on FA
utilization at the expense of glucose [3]. This change in substrate
utilization has been described in rodent models as well as in
humans and can be largely attributed to nutrition of excessive fat
containing food. Rodents can be made diabetic by prolonged
periods of exposure to a high fat diet. Alterations in FA metabo-
lism, that occur long before the diabetic state has been reached,
will lead to a permanent relocation of CD36 to the plasma
membrane and a reduced insulin-stimulated GLUT4-mediated
glucose uptake (see above) [63]. Furthermore, the increase in
cytoplasmic FA results in an increased ROS production (as a
by-product of increased FA oxidation) and accumulation of lipid
intermediates such as diacylglycerols (DAG) and ceramide (as a
result of a mismatch between FA uptake and FA oxidation). These
latter compounds have a profound impact on insulin signaling
[64]. Kinases, notably JNK and IKK, will be activated by ROS, and
PKC will be activated by DAG. Together they will down-regulate
insulin action through serine phosphorylation of IRS-1 [65]. In
contrast to tyrosine phosphorylation, serine phosphorylation leads
to the inhibition of IRS-1. Furthermore, ceramides neutralize insulin
action by inhibiting Akt [66]. Thus, in the diabetic heart intracellular
accumulation of lipid metabolites, most notably ceramides and DAG,
and generation of ROS promote a permanent CD36 relocation and a
decreased insulin-stimulated GLUT4 translocation. The latter
decreases the ability of the heart to utilize glucose.
4. Diabetic cardiac remodeling

In a healthy individual, cardiac hypertrophy is the answer to
an increased work load. It is a beneficial compensatory process as
it decreases wall stress and increases cardiac output and stroke
volume. However, hypertrophic growth in the context of disease
is in the end maladaptive because it will progress to decom-
pensation, contractile dysfunction and ultimately heart failure
[67]. Physiologically and biochemically, hypertrophic remodeling
is a delicate process, which balances between adaptation and
disease, and includes participation of a number of pathways
that direct growth and differentiation. When challenged, as in
diabetes, only a small percentage of the cells in the heart
(myoblasts) can divide and proliferate. A recent paper by Efe
et al. [68] describes genetic reprogramming of cardiac fibroblasts
into cardiomyocytes. This opens new avenues for cardiac
remodeling. Still, cardiac enlargement and capacity increase
occurs primarily as a result of growth of resident myocytes [69].
Myocyte enlargement may follow two patterns: on the one hand
concentric hypertrophy is achieved by the addition of sarcomeres
in parallel, increasing myocyte width; on the other hand eccentric
hypertrophy is the result of the addition of sarcomere series,
causing the myocyte to elongate [70].

The cause of concentric hypertrophy is increased stress on
the ventricle walls, which adversely affects the cardiac output.
The increased pressure is balanced by myocyte hypertrophy and
by increased wall thickness, which together eventually equalize
the wall stress [71]. This results in a concentric form of hyper-
trophy in which the ventricle walls increase in thickness while
the chamber volume is unaffected. The increase in wall thickness
is proportional to the increase in systolic pressure, and wall stress
is normalized. However, there is a greater oxygen demand of the
heart due to the increased cardiac mass. In eccentric hypertrophy,
chamber volume is increased with little or no effect on wall
thickness. Ventricular dilation allows for increased pressure
necessary for ejection, but wall stress is not normalized. Interest-
ingly, prolonged aortic stenosis also leads to a drop in cardiac
output, elevated end-diastolic pressure and dilation of the left
ventricle. This suggests that concentric hypertrophy may in time
deteriorate into a dilated eccentric growth [72].

4.1. The role of FA

Diabetic cardiomyopathy is characterized by ventricular
dysfunction occurring independently of a recognized cause such
as coronary atherosclerosis or hypertension [73]. Several studies
have shown that diabetes results in structural, mostly hyper-
trophic, and functional cardiac changes and subsequently heart
failure [4,74,75]. The underlying pathological mechanisms of
diabetic cardiomyopathy are still poorly understood, although
there is accumulating evidence that this cardiomyopathy is
associated with an altered metabolism. Increased FA uptake and
lipid accumulation in cardiomyocytes are associated with insulin
resistance, type 2 diabetes, hypertrophy and eventually heart
failure [3,76]. In this respect, several rodent models have been
studied, including rats on a high fat diet [41], leptin-deficient
animals [77] and cardiac PPARa overexpression mice [35]. Inter-
estingly, the absence of CD36 in cardiac PPARa overexpression
mice prevented myocyte triacylglycerol accumulation and cardiac
dysfunction both under basal conditions and following adminis-
tration of a high fat diet. The rescue of the cardiac PPARa
overexpression phenotype by CD36 ablation was associated with
increased glucose uptake and oxidation rather than changes in FA
utilization [78]. All these data indicate that intramyocardial lipid
accumulation underlies diabetic cardiac dysfunction. In this respect
a recent paper by Glenn et al. [79] is of interest. These investigators
generated a transgenic mouse model with cardiomyocyte-specific
overexpression of diacylglycerol acyl-transferase-1 (DGAT1). DGAT1
is involved in synthesizing triacylglyceroles. As expected, the DGAT1
transgenic mice displayed cardiac lipid accumulation. In addition,
the mice also exhibited cardiac fibrosis and contractile dysfunction.
As a result, this report strongly supports the concept that lipid
accumulation in the heart may be directly responsible for metabolic
cardiomyopathy.

4.2. The role of Akt signaling

Akt signaling is an important regulator of cardiac growth, and
its overexpression leads to enhanced contractility, cell survival
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and pathological cardiac hypertrophy [80,81]. High fat diet feed-
ing did not change the cardiac expression of Akt and Foxo3a but
basal phosphorylation levels of Akt were increased, which leads
to inhibition of Foxo3a [82]. In these hearts, insulin-stimulated
phosphorylation of Akt and Foxo3a was blunted, leading to
reduced insulin sensitivity. These data also favor a role for Akt
and its downstream signal Foxo3a in cardiac hypertrophy during
lipid overload (Fig. 3). Specifically, increased basal phosphoryla-
tion of Akt and decreased activation of Foxo3a, as occurring after
high fat diet feeding, promote cardiac hypertrophy and suppress
atrophy-specific gene transcription involving atrogin-1 and MuRF-1
[82]. In addition, a reduced insulin action hampers Foxo3a phos-
phorylation and apoptosis, which was supported by elevated
caspase activities in cardiomyocytes after high fat diet intake [82].
The observation of enhanced basal Foxo3a phosphorylation
and suppressed atrophy-specific gene suppression coincides with
cardiac hypertrophy during lipid overload. Taken together, during a
high fat diet, basal Akt phosphorylation levels increase and this will
cause both metabolic and hypertrophic cardiac remodeling.

4.3. The role of ROS

In diabetic patients, as in several animal models, ventricular
wall remodeling is often compromised by the development of
fibrosis, changes in the extracellular matrix and even apoptosis
[83–85]. Such changes are the result of a genetic reprogramming
often started by oxidative stress. ROS has been reported as a
product of excessive FA oxidation in diabetic cardiomyocytes
(Fig. 3). As second messenger, ROS can mediate hypertrophic
signals by regulating various intracellular signal transduction
cascades and the activity of various transcription factors, such
as NF-kB and activator protein-1 [86], and by activating mitogen-
activated protein kinases (MAPKs) [87,88]. In addition, ROS has
been shown to activate matrix metalloproteinases, in particular
MMP-2 [89]. MMPs are well known for their role in extracellular
matrix remodeling, but they can also cleave sarcomeric proteins
such as troponin-I and MLC-1, which leads to contractile
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Fig. 3. Schematic depiction of the consequences of increased FA uptake by cardiomy
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an increase in mitochondrial ROS generation. This will activate MMPs, which induce e

dysfunction and remodeling. In addition, ROS will (indirectly) affect the expression of
dysfunction and may contribute to apoptosis [90]. Both intracel-
lular and extracellular matrix actions of MMP may affect structure
and function of the heart. The standing body of literature on the
ROS–MMP–hypertrophy axis in ischemia-reperfusion is rather
extensive, but in insulin resistance/diabetes this aspect has been
neglected so far, since focus has been aimed at the contractile
performance. Although mitochondria are a major source of ROS,
the organelles themselves can be damaged by ROS. Mitochondrial
injury is reflected by mtDNA damage as well as by a decline in the
mtRNA transcripts, protein synthesis and mitochondrial function
[91]. Eventually, this can lead to apoptosis due to the release of
proapoptotic proteins by the mitochondria [92]. In the diabetic
heart, mitochondrial oxidative stress induces apoptosis by release
of cytochrome c and upregulation of caspase-3 and caspase-9
[93,94]. Thus, in earlier stages of insulin resistance, mitochondrial
FA oxidation increases, while in advanced stages of insulin
resistance, ROS production leads to mitochondrial injury, which
results in a decreased FA oxidation.
5. Concluding remarks

Our current understanding of the mechanism by which
systemic hyperlipidemia leads to cardiac remodeling and dysfunc-
tion can be summarized as follows. Initially, high fat diet-induced
hyperlipidemia will lead to an increased facilitated diffusion of FA
over the plasma membrane into the cytoplasm. The higher
intracellular concentration of FA will lead to an activation of
PPAR signaling pathways. This not only enhances mitochondrial
b-oxidation but also CD36 translocation, which will speed-up FA
import and further boost PPAR stimulation. The resulting vicious
circle of increased uptake of FA and FA-induced uptake stimula-
tion, eventually leads to mitochondrial FA overload. FA becomes
the preferred substrate for mitochondrial b-oxidation at the expense
of glucose. Excessive b-oxidation results in massive ROS production.
Over time this may contribute to cardiac remodeling by inducing the
expression of genes such as MMP-2. ROS production also can cause
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mitochondrial dysfunction, which leads to cardiomyocyte apoptosis.
Finally, FA overload affects the complex signaling patterns of insulin
action and glucose utilization directly (via Akt), and indirectly
(via ROS). Thus, whole body lipid overload causes an increased
uptake of FA into the heart, which is facilitated by CD36, which
hampers glucose oxidation. In the end this is detrimental to the
cardiomyocyte. Although the regulation of FA uptake and the effects
of FA on ongoing cellular processes are not yet completely under-
stood, the increasing insight in this complex diabetic pathology may
already offer opportunities for therapeutic intervention.
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