1,042 research outputs found
Structural and optical studies of FeSb2 under high pressure
Nanostructured orthorhombic FeSb2 and an amorphous phase were formed by
mechanical alloying starting from a mixture of high purity elemental Fe and Sb
powders. The effects of high pressures on structural and optical properties
were studied using X-ray diffraction (XRD) and Raman spectroscopy (RS). XRD
patterns showed the presence of the orthorhombic FeSb2 phase up to the maximum
pressure applied (28.2 GPa). The XRD patterns showed also an increase in the
amount of the amorphous phase with increasing pressure up to 23.3 GPa. At 14.3
GPa, together with the former phases, a new phase was observed and indexed to a
tetragonal FeSb2 phase, but its volume fraction is small at least up to 23.3
GPa. For the orthorhombic FeSb2 phase, the pressure dependence of the volume
fitted to a Birch-Murnaghan equation of state gave a bulk modulus = 74.2 +- 3.0
GPa and its pressure derivative = 7.5 +- 0.6. RS measurements were performed
from atmospheric pressure up to 45.2 GPa. For the orthorhombic FeSb2 phase, the
Raman active mode was observed up to the maximum pressure applied, while the
mode disappeared at 16.6 GPa. For pressures higher than 21 GPa, the Raman
active mode of a tetragonal FeSb2 phase was observed, confirming ab initio
calculations reported in the literature.Comment: 31 pages, 11 figures and 2 tables. Already submitted for publicatio
The Impact of Stellar Migration on Disk Outskirts
Stellar migration, whether due to trapping by transient spirals (churning),
or to scattering by non-axisymmetric perturbations, has been proposed to
explain the presence of stars in outer disks. After a review of the basic
theory, we present compelling, but not yet conclusive, evidence that churning
has been important in the outer disks of galaxies with type II (down-bending)
profiles, while scattering has produced the outer disks of type III
(up-bending) galaxies. In contrast, field galaxies with type I (pure
exponential) profiles appear to not have experienced substantial migration. We
conclude by suggesting work that would improve our understanding of the origin
of outer disks.Comment: Invited review, Book chapter in "Outskirts of Galaxies", Eds. J. H.
Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and Space Science Library,
Springer, in press 39 pages, 15 figure
Improved Estimates of Cosmological Perturbations
We recently derived exact solutions for the scalar, vector and tensor mode
functions of a single, minimally coupled scalar plus gravity in an arbitrary
homogeneous and isotropic background. These solutions are applied to obtain
improved estimates for the primordial scalar and tensor power spectra of
anisotropies in the cosmic microwave background.Comment: 31 pages, 4 figures, LaTeX 2epsilon, this version corrects an
embarrasing mistake (in the published version) for the parameter q_C.
Affected eqns are 105, 109-110, 124, 148-153 and 155-15
WKB approximation for inflationary cosmological perturbations
A new method for predicting inflationary cosmological perturbations, based on
the Wentzel-Kramers-Brillouin (WKB) approximation, is presented. A general
expression for the WKB scalar and tensor power spectra is derived. The main
advantage of the new scheme of approximation is that it is valid even if the
slow-roll conditions are violated. The method is applied to power-law
inflation, which allows a comparison with an exact result. It is demonstrated
that the WKB approximation predicts the spectral indices exactly and the
amplitude with an error lower than 10%, even in regimes far from
scale-invariance. The new method of approximation is also applied to a
situation where the slow-roll conditions hold. It is shown that the result
obtained bears close resemblance with the standard slow-roll calculation.
Finally, some possible improvements are briefly mentioned.Comment: 11 pages, 1 figure, RevTeX; minor changes, reference added (v2);
typos corrected (v3
Natural disturbances and the physiognomy of pine savannas : A phenomenological model
Abstract. Question: The decline of the Pinus palustris ecosystems has resulted from anthropogenic influences, such as conversion to pine plantation forestry, agriculture and land development, all of which are closely related to increases in human populations. Other effects, however, have arisen from alterations in disturbance regimes that maintain the structure and function of these ecosystems. How have alterations of the disturbance regime altered the physiognomy of ‘old-growth’ stands, and what are the implications for ecosystem conservation and restoration?
Methods: In contrast to models that emphasize close interactions among the vertically complex strata, we develop a conceptual phenomenological model for the physiognomic structure of Pinus palustris stands. We relate two natural disturbances (tropical storms and fire) that affect different stages of the life cycle to different aspects of the physiognomic structure. We then compare overstorey stand structure and ground cover composition of two old-growth longleaf stands near the extremes of different composite disturbance regimes: the Wade Tract (frequent hurricanes and fire) and the Boyd Tract (infrequent hurricanes and long-term fire exclusion).
Results: We predict that tropical storms and fires have different effects on stand physiognomy. Tropical storms are periodic, and sometimes intense, whereas fires are more frequent and less intense. Hurricanes directly influence the overstorey via wind-caused damage and mortality, and indirectly influence the herb layer by altering the spatial distribution of shading and litter accumulation. Fire exerts direct effects on juvenile stages and indirect effects on the herb layer via fine fuel consumption and selective mortality of potential competitors of P. palustris juveniles. These differences in effects of disturbances can result in widely different physiognomies for P. palustris stands. Finally, some global climate change scenarios have suggested that changes may occur in tropical storm and fire regimes, altering frequency and severity. Such changes may greatly affect pine stands, and ultimately entire pine savanna ecosystems.
Conclusions: Our phenomenological model of disturbance regimes in Pinus palustris old-growth produces very different physiognomies for different disturbances regimes that reflect natural process and human management actions. This model can be used to derive restoration strategies for pine savannas that are linked to reinstitution of important ecological processes rather than specific physiognomic states
Solitons in Triangular and Honeycomb Dynamical Lattices with the Cubic Nonlinearity
We study the existence and stability of localized states in the discrete
nonlinear Schr{\"o}dinger equation (DNLS) on two-dimensional non-square
lattices. The model includes both the nearest-neighbor and long-range
interactions. For the fundamental strongly localized soliton, the results
depend on the coordination number, i.e., on the particular type of the lattice.
The long-range interactions additionally destabilize the discrete soliton, or
make it more stable, if the sign of the interaction is, respectively, the same
as or opposite to the sign of the short-range interaction. We also explore more
complicated solutions, such as twisted localized modes (TLM's) and solutions
carrying multiple topological charge (vortices) that are specific to the
triangular and honeycomb lattices. In the cases when such vortices are
unstable, direct simulations demonstrate that they turn into zero-vorticity
fundamental solitons.Comment: 17 pages, 13 figures, Phys. Rev.
Investigating Safety And Preliminary Efficacy Of Afm13 Plus Pembrolizumab In Patients With Relapsed/Refractory Hodgkin Lymphoma After Brentuximab Vedotin Failure
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149522/1/hon134_2629.pd
ABJM models in N=3 harmonic superspace
We construct the classical action of the Aharony-Bergman-Jafferis-Maldacena
(ABJM) model in the N=3, d=3 harmonic superspace. In such a formulation three
out of six supersymmetries are realized off shell while the other three mix the
superfields and close on shell. The superfield action involves two
hypermultiplet superfields in the bifundamental representation of the gauge
group and two Chern-Simons gauge superfields corresponding to the left and
right gauge groups. The N=3 superconformal invariance allows only for a minimal
gauge interaction of the hypermultiplets. Amazingly, the correct sextic scalar
potential of ABJM emerges after the elimination of auxiliary fields. Besides
the original U(N)xU(N) ABJM model, we also construct N=3 superfield
formulations of some generalizations. For the SU(2)xSU(2) case we give a simple
superfield proof of its enhanced N=8 supersymmetry and SO(8) R-symmetry.Comment: 1+35 pages, minor changes, a reference added, published versio
Nonlinear multidimensional cosmological models with form fields: stabilization of extra dimensions and the cosmological constant problem
We consider multidimensional gravitational models with a nonlinear scalar
curvature term and form fields in the action functional. In our scenario it is
assumed that the higher dimensional spacetime undergoes a spontaneous
compactification to a warped product manifold. Particular attention is paid to
models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for
solitonic form fields. It is shown that for certain parameter ranges the extra
dimensions are stabilized. In particular, stabilization is possible for any
sign of the internal space curvature, the bulk cosmological constant and of the
effective four-dimensional cosmological constant. Moreover, the effective
cosmological constant can satisfy the observable limit on the dark energy
density. Finally, we discuss the restrictions on the parameters of the
considered nonlinear models and how they follow from the connection between the
D-dimensional and the four-dimensional fundamental mass scales.Comment: 21 pages, LaTeX2e, minor changes, improved references, fonts include
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
- …