107 research outputs found

    Formation of phase lags at the cyclotron energies in the pulse profiles of magnetized, accreting neutron stars

    Get PDF
    Context: Accretion-powered X-ray pulsars show highly energy-dependent and complex pulse-profile morphologies. Significant deviations from the average pulse profile can appear, in particular close to the cyclotron line energies. These deviations can be described as energy-dependent phase lags, that is, as energy-dependent shifts of main features in the pulse profile. Aims: Using a numerical study we explore the effect of cyclotron resonant scattering on observable, energy-resolved pulse profiles. Methods: We generated the observable emission as a function of spin phase, using Monte Carlo simulations for cyclotron resonant scattering and a numerical ray-tracing routine accounting for general relativistic light-bending effects on the intrinsic emission from the accretion columns. Results: We find strong changes in the pulse profile coincident with the cyclotron line energies. Features in the pulse profile vary strongly with respect to the average pulse profile with the observing geometry and shift and smear out in energy additionally when assuming a non-static plasma. Conclusions: We demonstrate how phase lags at the cyclotron energies arise as a consequence of the effects of angular redistribution of X-rays by cyclotron resonance scattering in a strong magnetic field combined with relativistic effects. We also show that phase lags are strongly dependent on the accretion geometry. These intrinsic effects will in principle allow us to constrain a system's accretion geometry.Comment: 4 pages, 4 figures; updated reference lis

    Cyclotron resonant scattering feature simulations. I. Thermally averaged cyclotron scattering cross sections, mean free photon-path tables, and electron momentum sampling

    Get PDF
    Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on the calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electron's final spin. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01<B/B_{crit}<=0.12, where B_{crit}=4.413x10^{13} G and 3keV<=kT<15keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online at http://www.sternwarte.uni-erlangen.de/research/cyclo.Comment: A&A, in pres

    Distorted cyclotron line profile in Cep X-4 as observed by NuSTAR

    Get PDF
    We present spectral analysis of NuSTAR and Swift observations of Cep X-4 during its outburst in 2014. We observed the source once during the peak of the outburst and once during the decay, finding good agreement in the spectral shape between the observations. We describe the continuum using a powerlaw with a Fermi-Dirac cutoff at high energies. Cep X-4 has a very strong cyclotron resonant scattering feature (CRSF) around 30 keV. A simple absorption-like line with a Gaussian optical depth or a pseudo-Lorentzian profile both fail to describe the shape of the CRSF accurately, leaving significant deviations at the red side of the line. We characterize this asymmetry with a second absorption feature around 19 keV. The line energy of the CRSF, which is not influenced by the addition of this feature, shows a small but significant positive luminosity dependence. With luminosities between (1-6)e36 erg/s, Cep X-4 is below the theoretical limit where such a correlation is expected. This behavior is similar to Vela X-1 and we discuss parallels between the two systems.Comment: 6 pages, 4 figure, accepted for publication in ApJ letter

    SIMULTANEOUS FITS IN ISIS ON THE EXAMPLE OF GRO J1008–57

    Get PDF
    Parallel computing and steadily increasing computation speed have led to a new tool for analyzing multiple datasets and datatypes: fitting several datasets simultaneously.  With this technique, physically connected parameters of individual data can be treated as a single parameter by implementing this connection directly into the fit. We discuss the terminology, implementation, and possible issues of simultaneous fits based on the Interactive Spectral Interpretation System (ISIS) X-ray data analysis tool. While all data modeling tools in X-ray astronomy in principle allow data to be fitted individually from multiple data sets, the syntax used in these tools is not often well suited for this task. Applying simultaneous fits to the transient X-ray binary GRO J1008–57, we find that the spectral shape is only dependent on X-ray flux. We determine time independent parameters e.g., the folding energy Efold, with unprecedented precision

    A constant Cyclotron Line Energy in 4U 0115+634

    Get PDF
    We present a study of RXTE and INTEGRAL spectra of the transient 3.6 s X-ray pulsar 4U 0115+634 taken during a giant outburst in 2008 March/April. The spectra can be almost equally well modeled by two different semi-empirical continuum models, modified by an Fe Kα fluorescence line, interstellar absorption, and cyclotron resonance scattering features (CRSFs) located at ∼10.7, 21.8, 35.5, 46.7, and 59.7 keV. One of these two models, the so called NPEX model, leads to an anticorrelation between the centroid energy of the fundamental CRSF E_0 and the X-ray flux F_X, in agreement with previous works. The other model, consisting of a simple exponentially cutoff power law modified by a Gaussian emission feature around 10 keV, however, leads to a constant value for E_0 for the observed fluxes and a comparatively narrow line shape. We show that the cyclotron line model component resulting from the NPEX fits rather contribute to the broadband continuum model. We conclude that the previously reported anticorrelation is probably due to an artifact of the particular modeling of the continuum

    A Suzaku View of Cyclotron Line Sources and Candidates

    Get PDF
    Seventeen accreting neutron star pulsars, mostly high mass X-ray binaries with half of them Be-type transients, are known to exhibit Cyclotron Resonance Scattering Features (CRSFs) in their X-ray spectra, with characteristic line energies from 10 to 60 keV. To date about two thirds of them, plus a few similar systems without known CRSFs, have been observed with Suzaku. We present an overview of results from these observations, including the discovery of a CRSF in the transient 1A 1118-61 and pulse phase resolved spectroscopy of GX 301-2. These observations allow for the determination of cyclotron line parameters to an unprecedented degree of accuracy within a moderate amount of observing time. This is important since these parameters vary - e.g., with orbital phase, pulse phase, or luminosity - depending on the geometry of the magnetic field of the pulsar and the properties of the accretion column at the magnetic poles. We briefly introduce a spectral model for CRSFs that is currently being developed and that for the first time is based on these physical properties. In addition to cyclotron line measurements, selected highlights from the Suzaku analyses include dip and flare studies, e.g., of 4U 1907+09 and Vela X-1, which show clumpy wind effects (like partial absorption and/or a decrease in the mass accretion rate supplied by the wind) and may also display magnetospheric gating effects.Comment: 8 pages, 5 figures, 1 table, to appear in the proceedings of the conference "Suzaku 2011 Exploring the X-ray Universe: Suzaku and Beyond" which will be published electronically by AI

    Prediction of enteric methane production, yield and intensity in dairy cattle using an intercontinental database

    Get PDF
    Enteric methane (CH4) production from cattle contributes to global greenhouse gas emissions. Measurement of enteric CH4 is complex, expensive and impractical at large scales; therefore, models are commonly used to predict CH4 production. However, building robust prediction models requires extensive data from animals under different management systems worldwide. The objectives of this study were to (1) collate a global database of enteric CH4 production from individual lactating dairy cattle; (2) determine the availability of key variables for predicting enteric CH4 production (g/d per cow), yield [g/kg dry matter intake (DMI)], and intensity (g/kg energy corrected milk) and their respective relationships; (3) develop intercontinental and regional models and cross-validate their performance; and (4) assess the trade-off between availability of on-farm inputs and CH4 prediction accuracy. The intercontinental database covered Europe (EU), the US (US), Chile (CL), Australia (AU), and New Zealand (NZ). A sequential approach was taken by incrementally adding key variables to develop models with increasing complexity. Methane emissions were predicted by fitting linear mixed models. Within model categories, an intercontinental model with the most available independent variables performed best with root mean square prediction error (RMSPE) as a percentage of mean observed value of 16.6, 14.4, and 19.8% for intercontinental, EU, and US regions, respectively. Less complex models requiring only DMI had predictive ability comparable to complex models. Enteric CH4 production, yield, and intensity prediction models developed on an intercontinental basis had similar performance across regions, however, intercepts and slopes were different with implications for prediction. Revised CH4 emission conversion factors for specific regions are required to improve CH4 production estimates in national inventories. In conclusion, information on DMI is required for good prediction, and other factors such as dietary NDF concentration, improve the prediction. For enteric CH4 yield and intensity prediction, information on milk yield and composition is required for better estimation
    corecore