49 research outputs found

    Humidity-Induced Degradation of Lithium-Stabilized Sodium-Beta Alumina Solid Electrolytes

    Get PDF
    Sodium-beta alumina is a solid-state electrolyte with outstanding chemical, electrochemical, and mechanical properties. Sodium polyaluminate is successfully employed in established Na–S and Na–NiCl 2 cell systems. It is a promising candidate for all-solid-state sodium batteries. However, humidity affects the performance of this solid electrolyte. In this work, the effect of humidity on disk-shaped samples of Li-stabilized sodium-beta alumina stored in three different environments is quantified. We used impedance analysis and additional characterizations to investigate the consequences of the occurring degradation, namely ion exchange and subsequent buildup of surface layers. Sodium-beta alumina’s ionic conductivity gradually deteriorates up to two orders of magnitude. This is due to layers developed superficially during storage, while its fracture strength of 240 MPa remains unaffected. Changes in microstructure, composition, and cycle life of Na|BASE|Na cells highlight the importance of proper storage conditions: In just one week of improper storage, the critical current density collapsed from the maximum of 9.1 mA cm −2 , one of the highest values reported for sodium-beta alumina, to 1.7 mA cm −2 at 25 °C. The results validate former observations regarding sodium-beta alumina’s moisture sensitivity and suggest how to handle sodium-beta alumina used in electrochemical cell systems

    From Facility to Application Sensor Data: Modular, Continuous and Holistic Monitoring with DCDB

    Full text link
    Today's HPC installations are highly-complex systems, and their complexity will only increase as we move to exascale and beyond. At each layer, from facilities to systems, from runtimes to applications, a wide range of tuning decisions must be made in order to achieve efficient operation. This, however, requires systematic and continuous monitoring of system and user data. While many insular solutions exist, a system for holistic and facility-wide monitoring is still lacking in the current HPC ecosystem. In this paper we introduce DCDB, a comprehensive monitoring system capable of integrating data from all system levels. It is designed as a modular and highly-scalable framework based on a plugin infrastructure. All monitored data is aggregated at a distributed noSQL data store for analysis and cross-system correlation. We demonstrate the performance and scalability of DCDB, and describe two use cases in the area of energy management and characterization.Comment: Accepted at the The International Conference for High Performance Computing, Networking, Storage, and Analysis (SC) 201

    Optical simulations and optimization of perovskite/CI(G)S tandem solar cells using the transfer matrix method

    Get PDF
    In this work we employ the transfer matrix method for the analysis of optical materials properties to simulate and optimize monolithic tandem solar cell devices based on CuIn1x_{1−x}Gax_xSe2_2, CI(G)S, and perovskite (PVK) absorbers. By finding models that fit well the experimental data of the CI(G)S solar cell, the semitransparent perovskite solar cell (PSC) and the PVK/CI(G)S monolithic tandem solar cell, we were able to perform a detailed optical loss analysis that allowed us to determine sources of parasitic absorption. We found better substitute materials for the transport layers to increase the power conversion efficiency and, in case of semitransparent PSCs, sub-bandgap transmittance. Our results set guidelines for the monolithic PVK/CI(G)S tandem solar cells development, predicting an achievable efficiency of 30%

    Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation

    Get PDF
    Aims Premature cardiovascular events complicate chronic inflammatory conditions. Low-dose weekly methotrexate (MTX), the most widely used disease-modifying drug for rheumatoid arthritis (RA), reduces disease-associated cardiovascular mortality. MTX increases intracellular accumulation of adenosine monophosphate (AMP) and 5-aminoimidazole-4-carboxamide ribonucleotide which activates AMP-activated protein kinase (AMPK). We hypothesised that MTX specifically protects the vascular endothelium against inflammatory injury via induction of AMPK-regulated protective genes. Methods/results In the (NZW×BXSB)F1 murine model of inflammatory vasculopathy, MTX 1 mg/kg/week significantly reduced intramyocardial vasculopathy and attenuated end-organ damage. Studies of human umbilical vein endothelial cells (HUVEC) and arterial endothelial cells (HAEC) showed that therapeutically relevant concentrations of MTX phosphorylate AMPKαThr172, and induce cytoprotective genes including manganese superoxide dismutase (MnSOD) and haem oxygenase-1 (HO-1). These responses were preserved when HUVECs were pretreated with tumour necrosis factor-α to mimic dysfunctional endothelium. Furthermore, MTX protected against glucose deprivation-induced endothelial apoptosis. Mechanistically, MTX treatment led to cyclic AMP response element-binding protein (CREB)Ser133 phosphorylation, while AMPK depletion attenuated this response and the induction of MnSOD and HO-1. CREB siRNA inhibited upregulation of both cytoprotective genes by MTX, while chromatin immunoprecipitation demonstrated CREB binding to the MnSOD promoter in MTX-treated EC. Likewise, treatment of (NZW×BXSB)F1 mice with MTX enhanced AMPKαThr172 phosphorylation and MnSOD, and reduced aortic intercellular adhesion molecule-1 expression. Conclusions These data suggest that MTX therapeutically conditions vascular endothelium via activation of AMPK-CREB. We propose that this mechanism contributes to the protection against cardiovascular events seen in patients with RA treated with MTX

    Modified Kolmogorov Wave Turbulence in QCD matched onto "Bottom-up" Thermalization

    Full text link
    We investigate modification of Kolmogorov wave turbulence in QCD calculating gluon spectra as functions of time in the presence of a low energy source which feeds in energy density in the infrared region at a time-dependent rate. Then considering the picture of saturation constraints as has been constructed in the "bottom-up" thermalization approach we revisit that picture for RHIC center-mass energy, W=130GeVW = 130 {GeV}, and also extend it to LHC center-mass energy, W=5500GeVW = 5500 {GeV}, thus for two cases having an opportunity to calculate the equilibration time, taueqthermtau_{eq|therm}, of the gluon system produced in a central heavy ion collision at mid-rapidity region. Thereby, at RHIC and LHC energies we can match the equilibration time, obtained from the late stage gluon spectrum of the modified Kolmogorov wave turbulence, onto that of the "bottom-up" thermalization and other evolutional approaches as well. In addition, from the revised "bottom-up" approach we find the gluon liberation coefficient to be on the average, c=0.811.06c = 0.81 - 1.06 at RHIC and c=0.500.56c = 0.50 - 0.56 at LHC. We also present other phenomenological estimates of tauthermtau_{therm} which, at QCD realistic couplings, yield 0.45fm0.65fm<tautherm<0.97fm2.72fm0.45fm - 0.65fm < tau_{therm} < 0.97fm - 2.72fm at RHIC and 0.31fm0.40fm<tautherm<0.86fm2.04fm0.31fm - 0.40fm < tau_{therm} < 0.86fm - 2.04fm at LHC, both reflecting the original and modified Kolmogorov wave turbulent scenarios. In the latter case, at certain conditions, taking also into account both very small and realistic couplings we give estimates - 0.65fm<tautherm<1.29fm0.65fm < tau_{therm} < 1.29fm at RHIC and 0.52fm<tautherm<1.16fm0.52fm < tau_{therm} < 1.16fm at LHC, as well as at realistic couplings we find 0.53<tautherm<0.7fm0.53 < tau_{therm} < 0.7fm at RHIC and 0.41<tautherm<0.65fm0.41 < tau_{therm} < 0.65fm at LHC.Comment: 37 pages, 8 figures and 5 tables: typos were corrected, content changed in Abstract and Conclusions, 2 tables were added in Conclusion

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore