70 research outputs found

    Subscribe Now: On the Effectiveness of Advertising Messages in Promoting Newspapers’ Online Subscriptions

    Get PDF
    Previous literature has suggested that newspaper publishers should optimize how they advertise their online subscriptions. However, empirical findings on the effectiveness of advertising messages in increasing people’s willingness to pay for such online subscriptions are still rare. Therefore, this study conducted an online experiment with U.K. participants (N = 815) to investigate the effects of different advertising messages on people’s willingness to pay for online news. These so-called subscription pitches included digital-specific, social, normative, and price transparency appeals. The findings show that a subscription pitch that includes both a normative appeal and a price transparency appeal significantly increases people’s willingness to pay. This indicates that informing audiences that their subscription will support independent, inclusive, and watchdog journalism and that a subscription model was implemented due to the news industry’s critical financial situation is particularly effective. Thereby, the study expands research on people’s willingness to pay for online news

    A novel alveolar Krebs cycle-triggered CO2 sensing mechanism regulates regional pulmonary ventilation.

    Get PDF
    Pulmonary perfusion disorders provoke atelectasis in order to minimize ventilation/perfusion mismatch. However, the underlying mechanisms remain unknown. Because intraalveolar CO2 concentration ([CO2]iA) declines as a consequence of poor pulmonary perfusion we postulated the existence a novel alveolar CO2-sensing mechanism which adapts the ventilation to perfusion. Real-time fluorescence imaging of rat lungs revealed that low [CO2]iA decreased cytosolic and increased mitochondrial Ca2+ in alveolar epithelial cells (AEC), leading to reduction of surfactant secretion and alveolar ventilation. Mitochondrial inhibition by ruthenium red or rotenone blocked the hypocapnia-induced responses. In cultured Type 2 AEC hypocapnia decreased cytosolic Ca2+ independently from pH and increased the NADH production, the mitochondrial transmembrane potential, and subsequently the mitochondrial Ca2+ uptake. All responses were completely blocked by the gene knockdown of the NADH producing Krebs cycle enzyme isocitrate dehydrogenase. Furthermore, ligature of the pulmonary artery of rabbits decreased alveolar ventilation, surfactant secretion, and lung compliance. Addition of 5% CO2 to the inspiratory gas inhibited all responses. Accordingly, we provide evidence for a novel CO2-sensing mechanism of AEC regulated by the Krebs cycle activity in terms of a negative feedback loop adapting surfactant secretion and thus regional ventilation to pulmonary perfusion

    IDH3 mediates apoptosis of alveolar epithelial cells type 2 due to mitochondrial Ca2+ uptake during hypocapnia

    Get PDF
    In adult respiratory distress syndrome (ARDS) pulmonary perfusion failure increases physiologic dead-space (VD/VT) correlating with mortality. High VD/VT results in alveolar hypocapnia, which has been demonstrated to cause edema formation, atelectasis, and surfactant depletion, evoked, at least in part, by apoptosis of alveolar epithelial cells (AEC). However, the mechanism underlying the hypocapnia-induced AEC apoptosis is unknown. Here, using fluorescent live-cell imaging of cultured AEC type 2 we could show that in terms of CO2 sensing the tricarboxylic acid cycle enzyme isocitrate dehydrogenase (IDH) 3 seems to be an important player because hypocapnia resulted independently from pH in an elevation of IDH3 activity and subsequently in an increase of NADH, the substrate of the respiratory chain. As a consequence, the mitochondrial transmembrane potential (ΔΨ) rose causing a Ca2+ shift from cytosol into mitochondria, whereas the IDH3 knockdown inhibited these responses. Furthermore, the hypocapnia-induced mitochondrial Ca2+ uptake resulted in reactive oxygen species (ROS) production, and both the mitochondrial Ca2+ uptake and ROS production induced apoptosis. Accordingly, we provide evidence that in AEC type 2 hypocapnia induces elevation of IDH3 activity leading to apoptosis. This finding might give new insight into the pathogenesis of ARDS and may help to develop novel strategies to reduce tissue injury in ARDS

    Sedation under JCI standard

    Get PDF
    The practice of anesthesia and sedation continues to expand beyond the operating room and now includes the gastroenterology suite, magnetic resonance imaging suites, and the cardiac catheterization laboratory. Non-anesthesiologists frequently administer sedation, in part because of a lack of available anesthesiologists and economic aspect, which emphasizes the safety of sedation. The Joint Commission International (JCI) set a standard responding to this issue indicating that qualified individuals who have drug and monitoring knowledge as well as airway management skills can only administer sedating agents. In Korea, the Ministry of Health and Welfare developed new sedation standards for hospital evaluation, which is similar to the JCI standards. This review intends to help with the understanding of the JCI sedation standard and compare it to the Korean sedation standard

    Lactate-Dehydrogenase 5 is overexpressed in non-small cell lung cancer and correlates with the expression of the transketolase-like protein 1

    Get PDF
    <p>Abstract</p> <p>Aims</p> <p>As one of the five Lactate dehydrogenase (LDH) isoenzymes, LDH5 has the highest efficiency to catalyze pyruvate transformation to lactate. LDH5 overexpression in cancer cells induces an upregulated glycolytic metabolism and reduced dependence on the presence of oxygen. Here we analyzed LDH5 protein expression in a well characterized large cohort of primary lung cancers in correlation to clinico-pathological data and its possible impact on patient survival.</p> <p>Methods</p> <p>Primary lung cancers (n = 269) and non neoplastic lung tissue (n = 35) were tested for LDH5 expression by immunohistochemistry using a polyclonal LDH5 antibody (ab53010). The results of LDH5 expression were correlated to clinico-pathological data as well as to patient's survival. In addition, the results of the previously tested Transketolase like 1 protein (TKTL1) expression were correlated to LDH5 expression.</p> <p>Results</p> <p>89.5% (n = 238) of NSCLC revealed LDH5 expression whereas LDH5 expression was not detected in non neoplastic lung tissues (n = 34) (p < 0.0001). LDH5 overexpression was associated with histological type (adenocarcinoma = 57%, squamous cell carcinoma = 45%, large cell carcinoma = 46%, p = 0.006). No significant correlation could be detected with regard to TNM-stage, grading or survival. A two sided correlation between the expression of TKTL1 and LDH5 could be shown (p = 0.002) within the overall cohort as well as for each grading and pN group. A significant correlation between LDH5 and TKTL1 within each histologic tumortype could not be revealed.</p> <p>Conclusions</p> <p>LDH5 is overexpressed in NSCLC and could hence serve as an additional marker for malignancy. Furthermore, LDH5 correlates positively with the prognostic marker TKTL1. Our results confirm a close link between the two metabolic enzymes and indicate an alteration in the glucose metabolism in the process of malignant transformation.</p

    Distinct roles of XRCC4 and Ku80 in non-homologous end-joining of endonuclease- and ionizing radiation-induced DNA double-strand breaks

    Get PDF
    Non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSBs) is mediated by two protein complexes comprising Ku80/Ku70/DNA-PKcs/Artemis and XRCC4/LigaseIV/XLF. Loss of Ku or XRCC4/LigaseIV function compromises the rejoining of radiation-induced DSBs and leads to defective V(D)J recombination. In this study, we sought to define how XRCC4 and Ku80 affect NHEJ of site-directed chromosomal DSBs in murine fibroblasts. We employed a recently developed reporter system based on the rejoining of I-SceI endonuclease-induced DSBs. We found that the frequency of NHEJ was reduced by more than 20-fold in XRCC4−/− compared to XRCC4+/+ cells, while a Ku80 knock-out reduced the rejoining efficiency by only 1.4-fold. In contrast, lack of either XRCC4 or Ku80 increased end degradation and shifted repair towards a mode that used longer terminal microhomologies for rejoining. However, both proteins proved to be essential for the repair of radiation-induced DSBs. The remarkably different phenotype of XRCC4- and Ku80-deficient cells with regard to the repair of enzyme-induced DSBs mirrors the embryonic lethality of XRCC4 knock-out mice as opposed to the viability of the Ku80 knock-out. Thus, I-SceI-induced breaks may resemble DSBs arising during normal DNA metabolism and mouse development. The removal of these breaks likely has different genetic requirements than the repair of radiation-induced DSBs

    Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks

    Get PDF
    In mammalian cells, the main pathway for DNA double-strand breaks (DSBs) repair is classical non-homologous end joining (C-NHEJ). An alternative or back-up NHEJ (B-NHEJ) pathway has emerged which operates preferentially under C-NHEJ defective conditions. Although B-NHEJ appears particularly relevant to genomic instability associated with cancer, its components and regulation are still largely unknown. To get insights into this pathway, we have knocked-down Ku, the main contributor to C-NHEJ. Thus, models of human cell lines have been engineered in which the expression of Ku70/80 heterodimer can be significantly lowered by the conditional induction of a shRNA against Ku70. On Ku reduction in cells, resulting NHEJ competent protein extracts showed a shift from C- to B-NHEJ that could be reversed by addition of purified Ku protein. Using a cellular fractionation protocol after treatment with a strong DSBs inducer followed by western blotting or immunostaining, we established that, among C-NHEJ factors, Ku is the main counteracting factor against mobilization of PARP1 and the MRN complex to damaged chromatin. In addition, Ku limits PAR synthesis and single-stranded DNA production in response to DSBs. These data support the involvement of PARP1 and the MRN proteins in the B-NHEJ route for the repair of DNA DSBs

    ATM Limits Incorrect End Utilization during Non-Homologous End Joining of Multiple Chromosome Breaks

    Get PDF
    Chromosome rearrangements can form when incorrect ends are matched during end joining (EJ) repair of multiple chromosomal double-strand breaks (DSBs). We tested whether the ATM kinase limits chromosome rearrangements via suppressing incorrect end utilization during EJ repair of multiple DSBs. For this, we developed a system for monitoring EJ of two tandem DSBs that can be repaired using correct ends (Proximal-EJ) or incorrect ends (Distal-EJ, which causes loss of the DNA between the DSBs). In this system, two DSBs are induced in a chromosomal reporter by the meganuclease I-SceI. These DSBs are processed into non-cohesive ends by the exonuclease Trex2, which leads to the formation of I-SceI–resistant EJ products during both Proximal-EJ and Distal-EJ. Using this method, we find that genetic or chemical disruption of ATM causes a substantial increase in Distal-EJ, but not Proximal-EJ. We also find that the increase in Distal-EJ caused by ATM disruption is dependent on classical non-homologous end joining (c-NHEJ) factors, specifically DNA-PKcs, Xrcc4, and XLF. We present evidence that Nbs1-deficiency also causes elevated Distal-EJ, but not Proximal-EJ, to a similar degree as ATM-deficiency. In addition, to evaluate the roles of these factors on end processing, we examined Distal-EJ repair junctions. We found that ATM and Xrcc4 limit the length of deletions, whereas Nbs1 and DNA-PKcs promote short deletions. Thus, the regulation of end processing appears distinct from that of end utilization. In summary, we suggest that ATM is important to limit incorrect end utilization during c-NHEJ
    corecore