163 research outputs found

    Independent recruitment of FRUITFULL-like transcription factors in the convergent origins of vernalization-responsive grass flowering

    Get PDF
    Flowering in response to low temperatures (vernalization) has evolved multiple times independently across angiosperms as an adaptation to match reproductive development with the short growing season of temperate habitats. Despite the context of a generally conserved flowering time network, evidence suggests that the genes underlying vernalization responsiveness are distinct across major plant clades. Whether different or similar mechanisms underlie vernalization-induced flowering at narrower (e.g., family-level) phylogenetic scales is not well understood. To test the hypothesis that vernalization responsiveness has evolved convergently in temperate species of the grass family (Poaceae), we carried out flowering time experiments with and without vernalization in several representative species from different subfamilies. We then determined the likelihood that vernalization responsiveness evolved through parallel mechanisms by quantifying the response of Pooideae vernalization pathway FRUITFULL (FUL)-like genes to extended periods of cold. Our results demonstrate that vernalization- induced flowering has evolved multiple times independently in at least five grass subfamilies, and that different combinations of FUL-like genes have been recruited to this pathway on several occasions.Independent recruitment of FRUITFULL-like transcription factors in the convergent origins of vernalization-responsive grass floweringpublishedVersio

    Major niche transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT domain genes

    Get PDF
    The external cues that trigger timely flowering vary greatly across tropical and temperate plant taxa, the latter rely- ing on predictable seasonal fluctuations in temperature and photoperiod. In the grass family (Poaceae) for example, species of the subfamily Pooideae have become specialists of the northern temperate hemisphere, generating the hypothesis that their progenitor evolved a flowering response to long days from a short-day or day-neutral ancestor. Sampling across the Pooideae, we found support for this hypothesis, and identified several secondary shifts to day- neutral flowering and one to short-day flowering in a tropical highland clade. To explain the proximate mechanisms for the secondary transition back to short-day-regulated flowering, we investigated the expression of CCT domain genes, some of which are known to repress flowering in cereal grasses under specific photoperiods. We found a shift in CONSTANS 1 and CONSTANS 9 expression that coincides with the derived short-day photoperiodism of our exem- plar species Nassella pubiflora. This sets up the testable hypothesis that trans- or cis-regulatory elements of these CCT domain genes were the targets of selection for major niche shifts in Pooideae grasses.Major niche transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT domain genespublishedVersio

    Genetic Characterization of the Norwegian Apple Collection

    Get PDF
    Commercial fruit production in Norway is located at around latitude 60 degrees north, demanding a careful choice of adapted cultivars. The most comprehensive collection of apple genetic resources in Norway is being kept in the Norwegian Apple Collection (NAC) at the Njos Fruit and Berry Centre (NJOS). The collection contains around 350 accessions and was recently genotyped with a single nucleotide polymorphism (SNP) array. Curated SNP data were used for the assessment of structure and diversity, pedigree confirmation, and core collection development. In the following SNP analysis, we identified several duplicates and parent-child relationships. Across the geographic regions represented, the collection was equally diverse. Different methods for analyzing population structure were applied. K-means clustering and a Bayesian modeling approach with prior assumptions of the data revealed five subpopulations associated with geographic breeding centers. The collection has a distinct genetic structure and low relatedness among the accessions; hence, two core collections with 100 accessions in each were created. These new core collections will allow breeders and researchers to use the NAC efficiently. The results from this study suggest that several of the accessions in the Norwegian Apple Collection could be of high importance for breeding purposes

    All-optical matter-wave lens using time-averaged potentials

    Get PDF
    The precision of matter-wave sensors benefits from interrogating large-particle-number atomic ensembles at high cycle rates. Quantum-degenerate gases with their low effective temperatures allow for constraining systematic errors towards highest accuracy, but their production by evaporative cooling is costly with regard to both atom number and cycle rate. In this work, we report on the creation of cold matter-waves using a crossed optical dipole trap and shaping them by means of an all-optical matter-wave lens. We demonstrate the trade off between lowering the residual kinetic energy and increasing the atom number by reducing the duration of evaporative cooling and estimate the corresponding performance gain in matter-wave sensors. Our method is implemented using time-averaged optical potentials and hence easily applicable in optical dipole trapping setups. © 2022, The Author(s)

    SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes

    Get PDF
    Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.</p

    Association of Mortality and Risk of Epilepsy With Type of Acute Symptomatic Seizure After Ischemic Stroke and an Updated Prognostic Model

    Get PDF
    IMPORTANCE: Acute symptomatic seizures occurring within 7 days after ischemic stroke may be associated with an increased mortality and risk of epilepsy. It is unknown whether the type of acute symptomatic seizure influences this risk. OBJECTIVE: To compare mortality and risk of epilepsy following different types of acute symptomatic seizures. DESIGN, SETTING, AND PARTICIPANTS: This cohort study analyzed data acquired from 2002 to 2019 from 9 tertiary referral centers. The derivation cohort included adults from 7 cohorts and 2 case-control studies with neuroimaging-confirmed ischemic stroke and without a history of seizures. Replication in 3 separate cohorts included adults with acute symptomatic status epilepticus after neuroimaging-confirmed ischemic stroke. The final data analysis was performed in July 2022. EXPOSURES: Type of acute symptomatic seizure. MAIN OUTCOMES AND MEASURES: All-cause mortality and epilepsy (at least 1 unprovoked seizure presenting >7 days after stroke). RESULTS: A total of 4552 adults were included in the derivation cohort (2547 male participants [56%]; 2005 female [44%]; median age, 73 years [IQR, 62-81]). Acute symptomatic seizures occurred in 226 individuals (5%), of whom 8 (0.2%) presented with status epilepticus. In patients with acute symptomatic status epilepticus, 10-year mortality was 79% compared with 30% in those with short acute symptomatic seizures and 11% in those without seizures. The 10-year risk of epilepsy in stroke survivors with acute symptomatic status epilepticus was 81%, compared with 40% in survivors with short acute symptomatic seizures and 13% in survivors without seizures. In a replication cohort of 39 individuals with acute symptomatic status epilepticus after ischemic stroke (24 female; median age, 78 years), the 10-year risk of mortality and epilepsy was 76% and 88%, respectively. We updated a previously described prognostic model (SeLECT 2.0) with the type of acute symptomatic seizures as a covariate. SeLECT 2.0 successfully captured cases at high risk of poststroke epilepsy. CONCLUSIONS AND RELEVANCE: In this study, individuals with stroke and acute symptomatic seizures presenting as status epilepticus had a higher mortality and risk of epilepsy compared with those with short acute symptomatic seizures or no seizures. The SeLECT 2.0 prognostic model adequately reflected the risk of epilepsy in high-risk cases and may inform decisions on the continuation of antiseizure medication treatment and the methods and frequency of follow-up

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study

    Get PDF
    It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest
    corecore