1,430 research outputs found

    Skillful spring forecasts of September Arctic sea ice extent using passive microwave sea ice observations

    Get PDF
    In this study, we demonstrate skillful spring forecasts of detrended September Arctic sea ice extent using passive microwave observations of sea ice concentration (SIC) and melt onset (MO). We compare these to forecasts produced using data from a sophisticated melt pond model, and find similar to higher skill values, where the forecast skill is calculated relative to linear trend persistence. The MO forecasts shows the highest skill in March–May, while the SIC forecasts produce the highest skill in June–August, especially when the forecasts are evaluated over recent years (since 2008). The high MO forecast skill in early spring appears to be driven primarily by the presence and timing of open water anomalies, while the high SIC forecast skill appears to be driven by both open water and surface melt processes. Spatial maps of detrended anomalies highlight the drivers of the different forecasts, and enable us to understand regions of predictive importance. Correctly capturing sea ice state anomalies, along with changes in open water coverage appear to be key processes in skillfully forecasting summer Arctic sea ice

    Biomolecular imaging and electronic damage using X-ray free-electron lasers

    Full text link
    Proposals to determine biomolecular structures from diffraction experiments using femtosecond X-ray free-electron laser (XFEL) pulses involve a conflict between the incident brightness required to achieve diffraction-limited atomic resolution and the electronic and structural damage induced by the illumination. Here we show that previous estimates of the conditions under which biomolecular structures may be obtained in this manner are unduly restrictive, because they are based on a coherent diffraction model that is not appropriate to the proposed interaction conditions. A more detailed imaging model derived from optical coherence theory and quantum electrodynamics is shown to be far more tolerant of electronic damage. The nuclear density is employed as the principal descriptor of molecular structure. The foundations of the approach may also be used to characterize electrodynamical processes by performing scattering experiments on complex molecules of known structure.Comment: 16 pages, 2 figure

    A measurement of the 4He(g,n) reaction from 23 < Eg < 70 MeV

    Full text link
    A comprehensive set of 4He(g,n) absolute cross-section measurements has been performed at MAX-lab in Lund, Sweden. Tagged photons from 23 < Eg < 70 MeV were directed toward a liquid 4He target, and neutrons were identified using pulse-shape discrimination and the Time-of-flight Technique in two liquid-scintillator detector arrays. Seven-point angular distributions have been measured for fourteen photon energies. The results have been subjected to complementary Transition-coefficient and Legendre-coefficient analyses. The results are also compared to experimental data measured at comparable photon energies as well as Recoil-Corrected Continuum Shell Model, Resonating Group Method, and Effective Interaction Hyperspherical-Harmonic Expansion calculations. For photon energies below 29 MeV, the angle-integrated data are significantly larger than the values recommended by Calarco, Berman, and Donnelly in 1983.Comment: 16 pages, 14 figures, some more revisions, submitted to Physical Review

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    Full text link
    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of alpha(t).The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurment where the running alpha(t) is probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.

    A Measurement of Rb using a Double Tagging Method

    Get PDF
    The fraction of Z to bbbar events in hadronic Z decays has been measured by the OPAL experiment using the data collected at LEP between 1992 and 1995. The Z to bbbar decays were tagged using displaced secondary vertices, and high momentum electrons and muons. Systematic uncertainties were reduced by measuring the b-tagging efficiency using a double tagging technique. Efficiency correlations between opposite hemispheres of an event are small, and are well understood through comparisons between real and simulated data samples. A value of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is statistical and the second systematic. The uncertainty on Rc, the fraction of Z to ccbar events in hadronic Z decays, is not included in the errors. The dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the deviation of Rc from the value 0.172 predicted by the Standard Model. The result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European Physical Journal

    Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices

    Get PDF
    The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
    corecore