42 research outputs found

    Tailoring Fibre Structure Enabled by X-ray Analytics for Targeted Biomedical Applications

    Get PDF
    The rising interest in designing fibres via spinning techniques combining the properties of various polymeric materials into advanced functionalised materials is directed towards targeted biomedical applications such as drug delivery, wearable sensors or tissue engineering. Understanding how these functional polymers exhibit multiscale structures ranging from the molecular level to nano-, micro-and millimetre scale is a key prerequisite for their challenging applications that can be addressed by a non-destructive X-ray based analytical approach. X-ray multimodalities combining X-ray imaging, scattering and diffraction allow the study of morphology, molecular structure, and the analysis of nano-domain size and shape, crystallinity and preferential orientation in 3D arrangements. The incorporation of X-ray analytics in the design process of polymeric fibers via their nanostructure under non-ambient conditions (i.e. temperature, mechanical load, humidity…) allows for efficient optimization of the fabrication process as well as quality control along the product lifetime under operating environmental conditions. Here, we demonstrate the successful collaboration between the laboratory of Biomimetic Textiles and Membranes and the Center of X-ray Analytics at Empa for the design, characterisation and optimisation of advanced functionalised polymeric fibrous material systems

    Spironolactone alleviates schizophrenia-related reversal learning in Tcf4 transgenic mice subjected to social defeat

    Get PDF
    Cognitive deficits are a hallmark of schizophrenia, for which no convincing pharmacological treatment option is currently available. Here, we tested spironolactone as a repurposed compound in Tcf4 transgenic mice subjected to psychosocial stress. In this ‘2-hit’ gene by environment mouse (GxE) model, the animals showed schizophrenia-related cognitive deficits. We had previously shown that spironolactone ameliorates working memory deficits and hyperactivity in a mouse model of cortical excitatory/inhibitory (E/I) dysbalance caused by an overactive NRG1-ERBB4 signaling pathway. In an add-on clinical study design, we used spironolactone as adjuvant medication to the standard antipsychotic drug aripiprazole. We characterized the compound effects using our previously established Platform for Systematic Semi-Automated Behavioral and Cognitive Profiling (PsyCoP). PsyCoP is a widely applicable analysis pipeline based on the Research Domain Criteria (RDoC) framework aiming at facilitating translation into the clinic. In addition, we use dimensional reduction to analyze and visualize overall treatment effect profiles. We found that spironolactone and aripiprazole improve deficits of several cognitive domains in Tcf4tg x SD mice but partially interfere with each other’s effect in the combination therapy. A similar interaction was detected for the modulation of novelty-induced activity. In addition to its strong activity-dampening effects, we found an increase in negative valence measures as a side effect of aripiprazole treatment in mice. We suggest that repurposed drug candidates should first be tested in an adequate preclinical setting before initiating clinical trials. In addition, a more specific and effective NRG1-ERBB4 pathway inhibitor or more potent E/I balancing drug might enhance the ameliorating effect on cognition even further

    Energy compensation and adiposity in humans

    Get PDF
    Acknowledgments The DLW database, which can be found at https://doubly-labelled-water-database.iaea.org/home, is hosted by the IAEA and generously supported by Taiyo Nippon Sanso and SERCON. We are grateful to the IAEA and these companies for their support and especially to Takashi Oono for his tremendous efforts at fundraising on our behalf. The authors also gratefully acknowledge funding from the Chinese Academy of Sciences (CAS 153E11KYSB20190045) to J.R.S. and the US National Science Foundation (BCS-1824466) awarded to H.P. The funders played no role in the content of this manuscript. We are grateful for the data submission of David Ludwig and Cara Ebbeling, and for the analysis by Steve Heymsfield of his own data indicating no change in FFM hydration with age in adults.Peer reviewedPublisher PD

    Variation in human water turnover associated with environmental and lifestyle factors

    Get PDF
    Water is essential for survival, but one in three individuals worldwide (2.2 billion people) lacks access to safe drinking water. Water intake requirements largely reflect water turnover (WT), the water used by the body each day. We investigated the determinants of human WT in 5604 people from the ages of 8 days to 96 years from 23 countries using isotope-tracking (2H) methods. Age, body size, and composition were significantly associated with WT, as were physical activity, athletic status, pregnancy, socioeconomic status, and environmental characteristics (latitude, altitude, air temperature, and humidity). People who lived in countries with a low human development index (HDI) had higher WT than people in high-HDI countries. On the basis of this extensive dataset, we provide equations to predict human WT in relation to anthropometric, economic, and environmental factors.acceptedVersio

    Physical activity and fat-free mass during growth and in later life

    Get PDF

    Body composition by 2

    No full text

    Ibuprofen-loaded electrospun poly(ethylene-co-vinyl alcohol) nanofibers for wound dressing applications

    No full text
    Chronic wounds are characterized by a prolonged inflammation phase preventing the normal processes of wound healing and natural regeneration of the skin. To tackle this issue, electrospun nanofibers, inherently possessing a high surface-to-volume ratio and high porosity, are promising candidates for the design of anti-inflammatory drug delivery systems. In this study, we evaluated the ability of poly(ethylene-co-vinyl alcohol) nanofibers of various chemical compositions to release ibuprofen for the potential treatment of chronic wounds. First, the electrospinning of poly(ethylene-co-vinyl alcohol) copolymers with different ethylene contents (32, 38 and 44 mol%) was optimized in DMSO. The morphology and surface properties of the membranes were investigated via state-of-the-art techniques and the influence of the ethylene content on the mechanical and thermal properties of each membrane was evaluated. Furthermore, the release kinetics of ibuprofen from the nanofibers in a physiological temperature range revealed that more ibuprofen was released at 37.5 degrees C than at 25 degrees C regardless of the ethylene content. Additionally, at 25 degrees C less drug was released when the ethylene content of the membranes increased. Finally, the scaffolds showed no cytotoxicity to normal human fibroblasts collectively paving the way for the design of electrospun based patches for the treatment of chronic wounds.ISSN:2516-023
    corecore