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Abstract

Dual-energy X-ray absorptiometry (DXA) and isotope dilution technique have been used as reference methods to validate the estimates of

body composition by simple field techniques; however, very few studies have compared these two methods. We compared the estimates of

body composition by DXA and isotope dilution (18O) technique in apparently healthy Indian men and women (aged 19–70 years, n 152,

48 % men) with a wide range of BMI (14–40 kg/m2). Isotopic enrichment was assessed by isotope ratio mass spectroscopy. The agreement

between the estimates of body composition measured by the two techniques was assessed by the Bland–Altman method. The mean age

and BMI were 37 (SD 15) years and 23·3 (SD 5·1) kg/m2, respectively, for men and 37 (SD 14) years and 24·1 (SD 5·8) kg/m2, respectively, for

women. The estimates of fat-free mass were higher by about 7 (95 % CI 6, 9) %, those of fat mass were lower by about 21 (95 % CI 218,

223) %, and those of body fat percentage (BF%) were lower by about 7·4 (95 % CI 28·2, 26·6) % as obtained by DXA compared with the

isotope dilution technique. The Bland–Altman analysis showed wide limits of agreement that indicated poor agreement between the

methods. The bias in the estimates of BF% was higher at the lower values of BF%. Thus, the two commonly used reference methods

showed substantial differences in the estimates of body composition with wide limits of agreement. As the estimates of body composition

are method-dependent, the two methods cannot be used interchangeably.
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Estimation of body composition is a vital element of nutritional

assessment as fat and fat-free compartments of body mass

have different health implications. Fat mass (FM) is closely

linked with metabolic complications of obesity because the

adipose tissue functions as an endocrine organ that releases

bioactive substances having pro-inflammatory properties(1).

In contrast, fat-free mass (FFM), especially muscle mass, plays

a protective role against the risk of chronic diseases inclu-

ding diabetes and osteoporosis(2). Ethnic differences in the

relationship between BMI and disease risk have been

associated with differences in body composition(3,4).

A number of techniques are available for the assessment of

body composition, and the choice of technique usually

depends on precision, accuracy, ease of application as well

as the cost. DXA is increasingly used for body composition

assessment because of its high precision and low dose of

radiation. A number of studies have validated other, less

precise, techniques such as anthropometry and bioelectrical
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impedance analysis against DXA as a reference method(5–7).

However, DXA is not without limitations. Although studies

have shown that estimates of body composition by DXA are

highly correlated with those derived using more accurate

methods, variations have been reported between the

estimates(8,9).

With increasing recognition of the association between the

high prevalence of the metabolic syndrome and ‘thin-fat’

phenotype in Indians, there is enhanced interest in the

assessment of body composition(10,11). A number of studies

in India have reported the body composition of different

population groups using different techniques including

DXA(12–15). However, different studies that have compared

the estimates of body composition using different methods

of body composition measurement need to consider the vari-

ation in estimates associated with these methods. Moreover,

studies comparing different methods of body composition

measurement tend to be population-specific due to ethnic

variations in body composition(16). Studies comparing the

estimates of body composition using DXA with those mea-

sured by other reference methods have not so far been

reported in India. Therefore, the aim of the present study

was to compare the estimates of body composition by DXA

with those using the isotope dilution technique.

Participants and methods

The present study was conducted according to the guidelines

laid down in the Declaration of Helsinki, and all procedures

involving human participants were approved by the ethics

committees of the National Institute of Nutrition, Hyderabad,

India, the London School of Hygiene & Tropical Medicine,

UK and Queensland University of Technology, Australia.

Written informed consent was obtained from all participants.

Participants

Healthy volunteers aged 19–70 years were enrolled in the

present study from two pre-established cohorts (Andhra

Pradesh Children and Parents Study (APCAPS), n 58 and

Indian Migration Study (IMS), n 94) living around the city

of Hyderabad, India. The APCAPS cohort was established to

assess the long-term impact of early nutrition supplementa-

tion provided to pregnant women and young children(17),

whereas the IMS cohort was established to examine the

association between rural to urban migration and cardio-

metabolic risk(18). To obtain a representative sample,

participants were chosen on the basis of pre-defined age,

sex, cohort, intervention group (in the case of the APCAPS)

or rural/urban migrants (in the case of the IMS), and BMI

categories (see online supplementary Tables S1 and S2). The

target enrolment was 160 participants.

Demographic and anthropometric data

Demographic information was collected from all study partici-

pants using an interviewer-administered questionnaire. Weight

was measured to the nearest 0·1 kg in light clothing without

footwear, using a digital Seca scale (www.seca.com). Standing

height was measured to the nearest 1 mm using a portable

stadiometer (Leicester Height Measure; Chasmors Limited).

Anthropometric measurements were taken twice, and the

average of the two values for each measurement was used

in the analysis. BMI was calculated as weight (kg)/height (m2).

Body composition of each participant was assessed by DXA

and isotope dilution technique on the same day.

Isotope dilution technique

Participants arrived at the National Institute of Nutrition in the

morning after an overnight fast. A baseline urine sample was

collected on arrival for the measurement of background isoto-

pic enrichment, followed by the administration of an oral dose

of 18O (0·2 g/kg body weight) to each participant at about

09.00 hours. The bottle containing the dose was rinsed with

50 ml deionised water before its consumption by the partici-

pants. A light breakfast was provided with 50 ml water at

about 10.00 hours. Any subsequent oral intake was avoided.

Follow-up urine samples were collected 4 and 5 h after the

intake of dose to allow complete equilibration of the isotope

within the body water compartments(19). Aliquots of all the

urine samples were stored in screw-capped glass containers

at 2208C until analysis. Isotopic enrichment in the pre- and

post-dose urine samples, the dose given and the local tap

water was measured using isotope ratio mass spectrometry

(Hydra 20-20; SerCon) at St John’s Research Institute, Banga-

lore, India. The CV calculated using repeated analysis for the

natural background samples as well as for the enriched

samples was less than 0·01 %. Each sample was analysed in

duplicate, and the mean was used for the analysis. Total

body water was calculated, allowing a correction by 0·7 %

for in vivo exchange(20). FFM was calculated from total body

water using a hydration constant of 0·73. FM was calculated

by subtracting FFM from body weight.

Dual-energy X-ray absorptiometry scans

Body composition was assessed by a whole-body DXA scan

using a fan-beam DXA machine (Hologic Discovery A model,

software version 12.5; www.hologic.com). The scanner was

calibrated periodically with a phantom, and its performance

was monitored according to the manufacturer’s quality

assurance protocol. During the scan, the participants were

asked to lie supine on the scanning bed with their arms at

their sides. Standard software options were used to calculate

the total FFM and FM. FFM was the sum of lean soft tissue

mass and bone mineral content. Precision estimates (CV%)

of body composition by DXA based on repeat measurements

in thirty participants were 0·7 and 1·4 % for FFM and FM,

respectively.

Statistical analyses

All analyses were conducted using Stata (version 11.2; Stata-

Corp). As FFM and FM showed a skewed distribution, these

variables were log-transformed before analysis, and, therefore,
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the mean differences between the two are expressed as ratios.

Other continuous variables were used in the original scale.

Differences between the body composition estimates (FFM,

FM and BF%) by DXA and isotope dilution technique were

assessed using paired t tests. The Bland–Altman method

was used to assess the agreement between the estimates of

body composition determined by the two techniques(21).

The mean difference in the estimates by the two techniques

(bias) and their 95 % limits of agreement (2 SD of the mean

difference) were calculated. As the bias and limits of agree-

ment for FFM and FM were on a logarithmic scale, these

values are presented as ratios. Correlation coefficients were

calculated to examine the association between the average

values of body composition measurements by the two

methods and the difference between these methods, which

indicates the proportional bias. All analyses were conducted

for the whole sample and additionally stratified by sex.

Results

A total of seventy-three men and seventy-nine women partici-

pated in the study. Their characteristics are presented in

Table 1. The participants were chosen to represent a wide

range of BMI varying from 13·8 to 39·7 kg/m2. The total

mass value measured by DXA showed a strong correlation

with weight measured by the scale (0·99, P,0·01). Although

there was a strong correlation between the estimates of

body composition measured by DXA and isotope dilution

technique (FFM: r 0·95, FM: r 0·95, BF%: r 0·89 all P,0·01),

the estimates of FFM obtained by DXA were higher than

those obtained by the isotope dilution technique in the

whole sample as well as in the subgroups stratified by sex

(Table 2). The estimates of FM and BF% obtained by DXA

were lower than those measured by the isotope dilution tech-

nique. On average, DXA overestimated the FFM values by

about 7 (95 % CI 6, 9 %) % compared with the isotope dilution

technique (Table 3; Fig. 1(a)). However, the limits of agree-

ment showed that 95 % of the estimates of FFM measured by

DXA were expected to be between 9 % lower and 26 %

higher than the values measured by the isotope dilution

technique. For FM, the bias was greater, and, on average,

the estimates by DXA were about 21 % lower than those by

the isotope dilution technique (Table 3; Fig. 1(b)). The limits

of agreement for FM were much larger (254 to 17 %) than

those for FFM between the two methods. There was no

correlation between the bias and the average values of the

estimates measured by the two methods for both FFM and

FM, indicating that the bias in the estimates of FFM and FM

did not change with the amount of FFM and FM, respectively.

On average, the estimates of BF% measured by DXA were

lower than those measured by the isotope dilution technique

by 7·4 (95 % CI 28·2, 26·6 %) % (Table 3; Fig. 1(c)). The bias

in the estimates of BF% was negatively correlated with the

average values of BF%, indicating that the difference between

the two methods was higher for the participants with lower

values of BF% (Table 3). The estimates of FFM, FM and BF%

measured by DXA explained about 89, 85 and 78 % of the

variation in the respective estimates measured by the isotope

dilution technique.

Discussion

The present study compared the estimates of body composition

measuredby twoprecise techniques – DXAand isotopedilution

technique – in apparently healthy, weight-stable Indian men

and women with a wide range of BMI. In this sample of

participants, the estimates of FFM were higher whereas those

of FM and BF% were lower using DXA than using the isotope

dilution technique. The agreement between the two methods

was not good as indicated by the significant bias between

these methods and wide limits of agreement, especially for

the estimates of FM and BF%. The bias in the estimates of

Table 2. Estimates of body composition by dual-energy X-ray absorp-
tiometry (DXA) and isotope dilution technique

(Mean values and standard deviations)

n

Isotope
dilution

technique DXA

P *Mean SD Mean SD

Fat-free mass (kg)
Whole sample 152 37·42 9·45 40·09 9·84 ,0·01
Men 73 44·18 7·98 46·89 8·28 ,0·01
Women 79 31·17 5·65 33·79 6·39 ,0·01

Fat mass (kg)
Whole sample 152 22·27 10·20 17·78 8·3 ,0·01
Men 73 19·93 9·58 15·09 7·49 ,0·01
Women 79 24·43 10·34 20·27 8·28 ,0·01

Body fat percentage
Whole sample 152 36·3 10·9 28·9 9·2 ,0·01
Men 73 29·8 8·7 22·3 6·6 ,0·01
Women 79 42·3 9·1 35·1 6·6 ,0·01

*P value was obtained from the paired t test of the difference.

Table 1. Characteristics of the study participants

(Mean values and standard deviations)

Men (n 73) Women (n 79)

Mean SD Minimum Maximum Mean SD Minimum Maximum

Age (years) 37 15 19 70 37 14 19 62
BMI (kg/m2) 23·3 5·1 14·5 37·6 24·1 5·8 13·8 39·7
Height (cm) 165·5 6·3 149·1 183·2 151·7 5·6 136·0 162·5
Weight (kg) 64·1 15·1 38·7 108·0 55·6 14·3 31·2 103·7
TM by DXA (kg) 64·0 15·0 39·2 107·6 55·7 14·2 31·4 102·6

TM, total mass; DXA, dual-energy X-ray absorptiometry.
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BF% measured by the two methods was higher for individuals

with lower values of BF%. The present study indicates that

these two methods cannot be used interchangeably as systema-

tic differences exist between the estimates of body composition.

Previous studies that have compared the estimates of

body composition by DXA and isotope dilution technique

have reported inconsistent results. In general, studies that

used older equipment (e.g. Hologic QDR 2000, Hologic QDR

1000W, Lunar DPX-L) with scans done in a pencil-beam mode

have shown underestimation of FFM and overestimation of

FM and BF% by DXA compared with the isotope dilution tech-

nique(22,23). In contrast, studies that used newer equipment

(e.g. Hologic QDR 4500W, QDR 4500A) have shown over-

estimation of FFM by DXA compared with the isotope dilution

technique(9,24). For example, a study in Chinese women in

1999 has shown that DXA (Hologic QDR 2000) underestimated

FFM by 0·5 kg and overestimated BF% by 0·8 %(23). Similarly,

a study from the UK (n 28) in 1992 has also found that DXA

(Hologic QDR 1000W) underestimated FFM by 0·2 kg compared

with the isotope dilution technique(22). However, a later study

by Deurenberg-Yap & Deurenberg(24) in Chinese, Malays and

Indians living in Singapore has shown overestimation of FFM

and underestimation of BF% by DXA (Hologic QDR 4500W)

compared with the 2H dilution technique. Similarly, a study by

Schoeller et al.(9) from theUSA that comparedbody composition

by DXA with other reference techniques in 1195 men and

women (DXA compared with the isotope dilution technique

in 395 participants) has also shown that DXA overestimated

FFM by 1·8 to 4·7 kg and underestimated FM by about 1·3 to

5·1 kg. The findings of the present study that used a newer

model of DXA (Hologic Discovery) are consistent with relatively

recent studies that have shown overestimation of FFM by DXA

compared with the isotope dilution technique. However, the

magnitude of bias in the estimates of FFM (approximately

3 kg) and FM (approximately 4·5 kg) in the present study is

larger than the bias reported in other studies.

A number of studies (Table 4) comparing the estimates

of body composition by DXA with those by multi-

component criterion methods have also reported inconsistent

results(22,25–29). Although the majority of these studies

reported underestimation of BF% by DXA, similar to the pre-

sent study, a few studies have reported a bias in the opposite

direction. For example, a study by Williams et al.(30) compared

DXA with a four-compartment (4C) model and reported the

overestimation of FM and BF% by DXA in non-obese adults.

In contrast, a few studies did not detect significant difference

in BF% by DXA compared with the 4C model(31–33).

Differences in the results of studies comparing the estimates of

body composition by DXAwith those by other techniques could

be related to a number of factors such as the use of DXA

machines by different manufacturers and differences in the

scan mode or software used for analyses. Machines developed

by different manufacturers as well as different models by

the same manufacturer, although based on the same physical

principles, differ in various aspects such as the generation

of high- and low-energy X-ray beams, X-ray detectors,

calibration methodology, algorithms used for selective tissue

imaging, edge detection, region-of-interest definition, system

calibration, etc.(34). Variations in the estimates of body compo-

sition with the machines developed by different manufacturers

and even with different models by the same manufacturer

have been reported(35–38). In addition, isotope dilution

technique has a number of limitations as the estimates of body

composition are based on a number of assumptions including

the equal distribution of a tracer in body water and constant

hydration of FFM(39). Both these techniques are thus error

prone, and a lack of agreement between the methods for the

estimation of body composition could be related to a number

of factors that can lead to inaccuracies in the estimates.

However, limits of agreement between the two methods

observed in the present study were wider (FFM: 29, þ 26 %;

FM: 246, þ 17 %; BF%: 217·3, 2·6 %) than those reported by

Table 3. Bias and 95 % limits of agreement for measures of body composition by dual-energy X-ray
absorptiometry (DXA) compared with the isotope dilution technique

n Bias* 95 % CI
Limits of

agreement† r ‡ P §

Fat-free mass (kg)
Whole sample 152 1·07 1·06, 1·09 0·91, 1·26 20·077 0·35
Men 73 1·06 1·04, 1·08 0·92, 1·23 20·127 0·28
Women 79 1·08 1·06, 1·10 0·91, 1·29 0·083 0·47

Fat mass (kg)
Whole sample 152 0·79 0·77, 0·82 0·54, 1·17 0·045 0·58
Men 73 0·75 0·71, 0·79 0·48, 1·17 0·043 0·71
Women 79 0·84 0·81, 0·86 0·63, 1·12 20·181 0·11

Body fat percentage
Whole sample 152 27·4 28·2, 26·6 217·3, 2·6 20·345 ,0·01
Men 73 27·5 28·7, 26·3 217·7, 2·8 20·428 ,0·01
Women 79 27·3 28·4, 26·2 217·0, 2·4 20·513 0·03

* Mean bias and 95 % CI for fat-free mass and fat mass are expressed as the ratio of DXA:isotope dilution technique values.
Bias is the difference (DXA 2 isotope dilution) between the log-transformed values of fat-free mass and fat mass estimated
from the two techniques. The values of body fat percentage are given on the original scale.

† 95 % Limits of agreement (2 SD of the mean difference) expressed as the ratio of DXA:isotope dilution values of fat-free
mass and fat mass. The values of body fat percentage are given on the original scale.

‡ r is Pearson’s correlation coefficient between the difference between DXA and isotope dilution technique and the average of
DXA and isotope measures of fat-free mass, fat mass and body fat.

§ Significance of the correlation coefficient.
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other studies, the majority of which have reported the limits of

agreement between ^10 % of the mean(40). In contrast, a few

other studies have reported that DXA could under- or overes-

timate the FM of an individual by almost 28 %(22). One of the

reasons for the narrow limits of agreement reported by other

studies could be the exclusion of extreme values of the differ-

ences. For example, Schoeller et al.(9) excluded observations

in which the difference in the estimates of FFM measured by

DXA and isotope dilution technique was .6 kg. The present

study did not exclude observations with larger differences

between the measurements, which may have contributed to

a larger bias between the measurements reported herein.

An interesting finding of the present study is that the bias in

the estimates of BF% by the two methods was higher at lower

values of BF% (r 20·345, P , 0·001; Table 3). A previous

study comparing the estimates of abdominal fat by DXA

with those using MRI in this sample has also shown that over-

estimation of abdominal fat by DXA was greater in individuals

with less abdominal fat(41). It is possible that the algorithms

used for the estimation of body composition by DXA produce

a larger error at very low levels of body fat. A number of

studies from other centres have shown that the bias in the esti-

mates of body composition by DXA varied according to a

number of factors including age, body size, body fat, sex,

health status, type of the instrument, etc.(30).

An important strength of the present study includes enrol-

ment of a large sample representing a broad range of age

and BMI. In addition, the present study used 18O as the iso-

tope tracer that may provide a more accurate estimate of

total body water than a more commonly used 2H2O as 18O

exchanges to a smaller degree with non-aqueous mol-

ecules(39). As differences in body composition in relation to

ethnicity are well known, population-specific validation

studies comparing DXA with other precise methods are

required. Therefore, the present study provides much-

needed evidence on the comparability of DXA with the

isotope dilution technique in a population group that is

known to have a high percentage of body fat at a given BMI

compared with other ethnic groups(10,15). A limitation of the

present study is the use of the isotope dilution technique for

validating DXA measurements of body composition instead

of a multi-component criterion technique. However, estimates

of body composition using the isotope dilution technique are

highly correlated with those using the criterion technique of

the 4C model(27). A study comparing the estimates of body

composition by densitometry, DXA and isotope dilution tech-

nique with those by the 4C model in Asian adults has shown

that estimates of BF% by the isotope dilution technique had

the lowest bias while those by DXA had the highest bias com-

pared with the 4C model, suggesting that the isotope dilution

technique may be the best two-compartment model for

measuring body fat(24).

In conclusion, the present study shows that estimates of

body composition by two commonly used reference methods

such as DXA and isotope dilution technique may be con-

siderably different at the individual level, with particularly

larger differences in the estimates of BF%. The two methods

are therefore not directly interchangeable. However, the
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Fig. 1. Bland–Altman plot of the estimates of (a) fat-free mass, (b) fat mass

and (c) body fat percentage by dual-energy X-ray absorptiometry and isotope

dilution technique. Values of fat-free mass and fat mass are presented on a

logarithmic scale. The central dashed line represents the mean difference

between the measures. The upper and lower dashed lines represent the

95 % limits of agreement (2 SD of the mean difference). (A colour version of

this figure can be found online at http://www.journals.cambridge.org/bjn).
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differences in the absolute values at the individual level may

not affect the results of the studies exploring the relationship

of body composition using either of these methods with

health outcomes, as these values were highly correlated.

Additional studies are required to develop correction factors

that could be used to calibrate DXA in order to alleviate the

differences in these two methods.

Supplementary material

To view supplementary material for this article, please visit
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