10 research outputs found

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Growth-Promoting Treatment Screening for Corticospinal Neurons in Mouse and Man

    No full text
    Neurons of the central nervous system (CNS) that project long axons into the spinal cord have a poor axon regenerative capacity compared to neurons of the peripheral nervous system. The corticospinal tract (CST) is particularly notorious for its poor regeneration. Because of this, traumatic spinal cord injury (SCI) is a devastating condition that remains as yet uncured. Based on our recent observations that direct neuronal interleukin-4 (IL-4) signaling leads to repair of axonal swellings and beneficial effects in neuroinflammation, we hypothesized that IL-4 acts directly on the CST. Here, we developed a tissue culture model for CST regeneration and found that IL-4 promoted new growth cone formation after axon transection. Most importantly, IL-4 directly increased the regenerative capacity of both murine and human CST axons, which corroborates its regenerative effects in CNS damage. Overall, these findings serve as proof-of-concept that our CST regeneration model is suitable for fast screening of new treatments for SCI

    Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation

    No full text
    Multiple sclerosis (MS) is a neuroinflammatory disorder, and current therapies focus on altering immune activity to reduce symptoms. Vogelaar and colleagues tested the ability of intrathecally applied IL-4, a cytokine typically associated with T helper type 2 responses, to treat established disease in several experimental autoimmune encephalomyelitis (EAE) models. IL-4 treatment led to reduced clinical scores, improved locomotor activity, and diminished axon damage. Somewhat surprisingly, the beneficial effects of IL-4 did not depend on T cell modulation in the chronic disease phase. The receptor for IL-4 was observed in postmortem brain histology of several MS patients, and they demonstrated that IL-4 could act directly on neurons in vitro. They also showed benefits of intranasal IL-4 administration in one of the EAE models, which could be a promising avenue to pursue in the clinic. Ongoing axonal degeneration is thought to underlie disability in chronic neuroinflammation, such as multiple sclerosis (MS), especially during its progressive phase. Upon inflammatory attack, axons undergo pathological swelling, which can be reversible. Because we had evidence for beneficial effects of T helper 2 lymphocytes in experimental neurotrauma and discovered interleukin-4 receptor (IL-4R) expressed on axons in MS lesions, we aimed at unraveling the effects of IL-4 on neuroinflammatory axon injury. We demonstrate that intrathecal IL-4 treatment during the chronic phase of several experimental autoimmune encephalomyelitis models reversed disease progression without affecting inflammation. Amelioration of disability was abrogated upon neuronal deletion of IL-4R. We discovered direct neuronal signaling via the IRS1-PI3K-PKC pathway underlying cytoskeletal remodeling and axonal repair. Nasal IL-4 application, suitable for clinical translation, was equally effective in improving clinical outcome. Targeting neuronal IL-4 signaling may offer new therapeutic strategies to halt disability progression in MS and possibly also neurodegenerative conditions

    Association of Later-Life Weight Changes With Survival to Ages 90, 95, and 100: The Women\u27s Health Initiative.

    No full text
    BACKGROUND: Associations of weight changes and intentionality of weight loss with longevity are not well described. METHODS: Using longitudinal data from the Women\u27s Health Initiative (N = 54 437; 61-81 years), we examined associations of weight changes and intentionality of weight loss with survival to ages 90, 95, and 100. Weight was measured at baseline, year 3, and year 10, and participants were classified as having weight loss (≥5% decrease from baseline), weight gain (≥5% increase from baseline), or stable weight ( RESULTS: A total of 30 647 (56.3%) women survived to ≥90 years. After adjustment for relevant covariates, 3-year weight loss of ≥5% vs stable weight was associated with lower odds of survival to ages 90 (OR, 0.67; 95% CI, 0.64-0.71), 95 (OR, 0.65; 95% CI, 0.60-0.71), and 100 (OR, 0.62; 95% CI, 0.49-0.78). Compared to intentional weight loss, unintentional weight loss was more strongly associated with lower odds of survival to age 90 (OR, 0.83; 95% CI, 0.74-0.94 and OR, 0.49; 95% CI, 0.44-0.55, respectively). Three-year weight gain of ≥5% vs stable weight was not associated with survival to age 90, 95, or 100. The pattern of results was similar among normal weight, overweight, and obese women in body mass index (BMI)-stratified analyses. CONCLUSIONS: Weight loss of ≥5% vs stable weight was associated with lower odds of longevity, more strongly for unintentional weight loss than for intentional weight loss. Potential inaccuracy of self-reported intentionality of weight loss and residual confounding were limitations

    Cold atoms in space : community workshop summary and proposed road-map

    No full text

    Cold atoms in space: community workshop summary and proposed road-map

    No full text
    AbstractWe summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.</jats:p
    corecore