69 research outputs found

    Trehalose metabolites in Arabidopsis - elusive, active and central: July 14 2009

    Get PDF
    Trehalose is an alpha, alpha-1, 1-linked glucose disaccharide. In plants, trehalose is synthesized in two steps. Firstly, trehalose-6-phosphate synthase (TPS) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate (T6P); secondly, T6P-phosphatase (TPP) converts T6P into trehalose and Pi. Trehalose is further cleaved into glucose by trehalase. In extracts of most plants, including Arabidopsis, levels of both trehalose and T6P are low, nearing detection limits, and this has delayed research into their function. Trehalose is transported widely in plants, but transport of T6P is not thought to occur except possibly at the subcellular level. Feeding trehalose to Arabidopsis seedlings alters carbon allocation with massive starch accumulation in cotyledons and leaves and absence of starch and growth in shoot and root apices. The Arabidopsis genome has experienced extensive radiation of genes likely encoding enzymes of T6P metabolism: 4 and 10 genes are found with homology to TPS and TPP respectively and 7 genes are found with homology to both TPS and TPP. Complementation of Saccharomyces cerevisiae mutants has shown that AtTPS1, AtTPPA and AtTPPB are functional enzymes. In contrast just a single gene encoding a protein with trehalase activity has been found. Whilst most TPS proteins appear cytosolic, strikingly, some TPPs appear targeted to chloroplasts; trehalase on the other hand is extracellular. Transporters of trehalose and T6P have yet to be described. Arabidopsis tps1 mutants are embryo lethal and results suggest that T6P is essential for several other steps in development including root growth and floral transition. Accordingly, altering T6P content has a profound effect on plant habitus and impacts metabolite profiles, sugar utilization and photosynthesis. These large effects have hindered dissection of cause and effect. In contrast, plants with large alterations in sucrose-6-phosphate concentrations are indistinguishable from wild type, suggesting very different functions for these compounds. Recently, T6P at low micromolar concentrations has been shown in vitro and in vivo to inhibit SnRK1 of the SNF1/AMPK group of protein kinases. This supports a function for T6P as a sugar signaling molecule integrating metabolism and development in plants in relation to carbon supply. Genetic engineering of Arabidopsis as well as tobacco, potato and rice with TPS or TPS/TPP protein fusions reveals that trehalose metabolism also mediates multiple abiotic stress tolerances. Trehalose applications also mediate biotic stress resistances. Both Escherichia coli and Saccharomyces cerevisiae TPS/TPP protein fusions can be used to engineer stress tolerance suggesting that metabolites rather than proteins of the trehalose pathway are key stress tolerance elicitors. Results underscore the central role of trehalose metabolites in integrating carbon metabolism and stress responses with plant development

    Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase

    Get PDF
    Trehalose is the most widespread disaccharide in nature, occurring in bacteria, fungi, insects, and plants. Its precursor, trehalose 6-phosphate (T6P), is also indispensable for the regulation of sugar utilization and growth, but the sites of action are largely unresolved. Here we use genetic and biochemical approaches to investigate whether T6P acts to regulate starch synthesis in plastids of higher plants. Feeding of trehalose to Arabidopsis leaves led to stimulation of starch synthesis within 30 min, accompanied by activation of ADP-glucose pyrophosphorylase (AGPase) via posttranslational redox modification. The response resembled sucrose but not glucose feeding and depended on the expression of SNF1-related kinase. We also analyzed transgenic Arabidopsis plants with T6P levels increased by expression of T6P synthase or decreased by expression of T6P phosphatase (TPP) in the cytosol. Compared with wild type, leaves of T6P synthase-expressing plants had increased redox activation of AGPase and increased starch, whereas TPP-expressing plants showed the opposite. Moreover, TPP expression prevented the increase in AGPase activation in response to sucrose or trehalose feeding. Incubation of intact isolated chloroplasts with 100 μM T6P significantly and specifically increased reductive activation of AGPase within 15 min. Results provide evidence that T6P is synthesized in the cytosol and acts on plastidial metabolism by promoting thioredoxin-mediated redox transfer to AGPase in response to cytosolic sugar levels, thereby allowing starch synthesis to be regulated independently of light. The discovery informs about the evolution of plant metabolism and how chloroplasts of prokaryotic origin use an intermediate of the ancient trehalose pathway to report the metabolic status of the cytosol

    Capillary electrophoresis-mass spectrometry analysis of trehalose-6-phosphate in Arabidopsis thaliana seedlings

    Get PDF
    Trehalose-6-phosphate (T6P) is an intermediate in the plant metabolic pathway that results in trehalose production. T6P has been shown to inhibit the sucrose nonfermenting-1-related protein kinase 1, which is a major regulator of metabolism. The quantitation of T6P has proven difficult due to the complexity of the plant matrix and the low abundance of T6P in plant tissues. The aim of this work was to develop a quantitation method for T6P present in Arabidopsis tissues, with capillary electrophoresis (CE) coupled to electrospray ionization-mass spectrometry (MS) with a sheath liquid (SL) interface. The CE-MS method was first optimized with respect to T6P signal intensity and separation of isomers by studying the composition of the background electrolyte (BGE) and SL. The use of triethylamine (TEA) in the BGE was favorable, providing separation of T6P from sucrose-6-phosphate and minimizing ionization suppression. Replacing ammonium acetate with TEA enhanced T6P signal intensities more than four times. The optimized method allowed quantification of T6P in plant extracts with good linearity (r2 > 0.99) within a biologically relevant concentration range. The limit of quantification was 80 nM in Arabidopsis extracts, corresponding to 33 pmol/g plant fresh weight. The CE-MS method was applied to the determination of T6P in seedlings from wild type (WT) Arabidopsis and mutants lacking the trehalase AtTRE1, tre1-1, challenged with trehalose or sorbitol. T6P accumulation in tre1-1 plants grown on sorbitol was about twice the level of T6P found in WT. CE-MS is shown to be a fast and reliable technique to analyze phosphodisaccharides for seedling extracts. The low sample volume requirement of CE and its direct MS coupling makes it an attractive alternative for anion-exchange liquid chromatography–MS

    Diversity and activity of sugar transporters in nematode-induced root syncytia

    Get PDF
    The plant-parasitic nematode Heterodera schachtii stimulates plant root cells to form syncytial feeding structures which synthesize all nutrients required for successful nematode development. Cellular re-arrangements and modified metabolism of the syncytia are accompanied by massive intra- and intercellular solute allocations. In this study the expression of all genes annotated as sugar transporters in the Arabidopsis Membrane Protein Library was investigated by Affymetrix gene chip analysis in young and fully developed syncytia compared with non-infected Arabidopsis thaliana roots. The expression of three highly up-regulated (STP12, MEX1, and GTP2) and three highly down-regulated genes (SFP1, STP7, and STP4) was analysed by quantitative RT-PCR (qRT-PCR). The most up-regulated gene (STP12) was chosen for further in-depth studies using in situ RT-PCR and a nematode development assay with a T-DNA insertion line revealing a significant reduction of male nematode development. The specific role of STP12 expression in syncytia of male juveniles compared with those of female juveniles was further shown by qRT-PCR. In order to provide evidence for sugar transporter activity across the plasma membrane of syncytia, fluorescence-labelled glucose was used and membrane potential recordings following the application of several sugars were performed. Analyses of soluble sugar pools revealed a highly specific composition in syncytia. The presented work demonstrates that sugar transporters are specifically expressed and active in syncytia, indicating a profound role in inter- and intracelluar transport processes

    Metabolite transport and associated sugar signalling systems underpinning source/ sink interactions

    Get PDF
    Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilization. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement

    Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways

    Get PDF
    The transition from vegetative growth to reproduction is a major developmental event in plants. To maximise reproductive success, its timing is determined by complex interactions between environmental cues like the photoperiod, temperature and nutrient availability and internal genetic programs. While the photoperiod- and temperature- and gibberellic acid-signalling pathways have been subjected to extensive analysis, little is known about how nutrients regulate floral induction. This is partly because nutrient supply also has large effects on vegetative growth, making it difficult to distinguish primary and secondary influences on flowering. A growth system using glutamine supplementation was established to allow nitrate to be varied without a large effect on amino acid and protein levels, or the rate of growth. Under nitrate-limiting conditions, flowering was more rapid in neutral (12/12) or short (8/16) day conditions in C24, Col-0 and Laer. Low nitrate still accelerated flowering in late-flowering mutants impaired in the photoperiod, temperature, gibberellic acid and autonomous flowering pathways, in the fca co-2 ga1-3 triple mutant and in the ft-7 soc1-1 double mutant, showing that nitrate acts downstream of other known floral induction pathways. Several other abiotic stresses did not trigger flowering in fca co-2 ga1-3, suggesting that nitrate is not acting via general stress pathways. Low nitrate did not further accelerate flowering in long days (16/8) or in 35S::CO lines, and did override the late-flowering phenotype of 35S::FLC lines. We conclude that low nitrate induces flowering via a novel signalling pathway that acts downstream of, but interacts with, the known floral induction pathways

    Chemical intervention in plant sugar signalling increases yield and resilience

    Get PDF
    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a ‘signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function
    corecore