143 research outputs found

    Gene expression analysis of heat-shock proteins and redox regulators reveals combinatorial prognostic markers in carcinomas of the gastrointestinal tract

    Get PDF
    Heat shock proteins (HSPs) are a large family of ubiquitously expressed proteins with diverse functions, including protein assembly and folding/unfolding. These proteins have been associated with the progression of various gastrointestinal tumours. Dysregulation of cellular redox has also been associated with gastrointestinal carcinogenesis, however, a link between HSPs and dysregulation of cellular redox in carcinogenesis remains unclear. In this study, we analysed mRNA co-expression and methylation patterns, as well as performed survival analysis and gene set enrichment analysis, on gastrointestinal cancer data sets (oesophageal, stomach and colorectal carcinomas) to determine whether HSP activity and cellular redox dysregulation are linked. A widespread relationship between HSPs and cellular redox was identified, with specific combinatorial co-expression patterns demonstrated to significantly alter patient survival outcomes. This comprehensive analysis provides the foundation for future studies aimed at deciphering the mechanisms of cooperativity between HSPs and redox regulatory enzymes, which may be a target for future therapeutic intervention for gastrointestinal tumours

    Radiosensitization with an inhibitor of poly(ADP-ribose) glycohydrolase: A comparison with the PARP1/2/3 inhibitor olaparib

    Get PDF
    Upon DNA binding the poly(ADP-ribose) polymerase family of enzymes (PARPs) add multiple ADP-ribose subunits to themselves and other acceptor proteins. Inhibitors of PARPs have become an exciting and real prospect for monotherapy and as sensitizers to ionising radiation (IR). The action of PARPs are reversed by poly(ADP-ribose) glycohydrolase (PARG). Until recently studies of PARG have been limited by the lack of an inhibitor. Here, a first in class, specific, and cell permeable PARG inhibitor, PDD00017273, is shown to radiosensitize. Further, PDD00017273 is compared with the PARP1/2/3 inhibitor olaparib. Both olaparib and PDD00017273 altered the repair of IR-induced DNA damage, resulting in delayed resolution of RAD51 foci compared with control cells. However, only PARG inhibition induced a rapid increase in IR-induced activation of PRKDC (DNA-PK) and perturbed mitotic progression. This suggests that PARG has additional functions in the cell compared with inhibition of PARP1/2/3, likely via reversal of tankyrase activity and/or that inhibiting the removal of poly(ADP-ribose) (PAR) has a different consequence to inhibiting PAR addition. Overall, our data are consistent with previous genetic findings, reveal new insights into the function of PAR metabolism following IR and demonstrate for the first time the therapeutic potential of PARG inhibitors as radiosensitizing agents

    Deregulation upon DNA damage revealed by joint analysis of context-specific perturbation data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deregulation between two different cell populations manifests itself in changing gene expression patterns and changing regulatory interactions. Accumulating knowledge about biological networks creates an opportunity to study these changes in their cellular context.</p> <p>Results</p> <p>We analyze re-wiring of regulatory networks based on cell population-specific perturbation data and knowledge about signaling pathways and their target genes. We quantify deregulation by merging regulatory signal from the two cell populations into one score. This joint approach, called JODA, proves advantageous over separate analysis of the cell populations and analysis without incorporation of knowledge. JODA is implemented and freely available in a Bioconductor package 'joda'.</p> <p>Conclusions</p> <p>Using JODA, we show wide-spread re-wiring of gene regulatory networks upon neocarzinostatin-induced DNA damage in Human cells. We recover 645 deregulated genes in thirteen functional clusters performing the rich program of response to damage. We find that the clusters contain many previously characterized neocarzinostatin target genes. We investigate connectivity between those genes, explaining their cooperation in performing the common functions. We review genes with the most extreme deregulation scores, reporting their involvement in response to DNA damage. Finally, we investigate the indirect impact of the ATM pathway on the deregulated genes, and build a hypothetical hierarchy of direct regulation. These results prove that JODA is a step forward to a systems level, mechanistic understanding of changes in gene regulation between different cell populations.</p

    Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    Get PDF
    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior. Materials and methods The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm. Results In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice. Conclusions The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated

    The molecular logic of endocannabinoid signalling

    Full text link
    The endocannabinoids are a family of lipid messengers that engage the cell surface receptors that are targeted by Δ9-tetrahydrocannabinol, the active principle in marijuana (Cannabis). They are made on demand through cleavage of membrane precursors and are involved in various short-range signalling processes. In the brain, they combine with CB1 cannabinoid receptors on axon terminals to regulate ion channel activity and neurotransmitter release. Their ability to modulate synaptic efficacy has a wide range of functional consequences and provides unique therapeutic possibilities. © 2003, Nature Publishing Group. All rights reserved

    Fast recognition and reidentification of vehicles from video data for different viewing directions

    No full text
    Traffic data can be obtained using video cameras. The data can be used, e.g., to optimise traffic flow by controlling traffic lights dynamically. In order to minimise the number of cameras it us useful to reidentify vehicles leaving ne monitored region and afterwards entering the viewing field of a further camera. From reidentified vehicles travel times can be obtained which are relevant parameters to optimise traffic control. A method to reidentify vehicles based on extraction of 3D prototype vehicle models and on colour extraction from the top plne of vehicles is presented. Shadows and light refelctions on wet street are corrected, and therefore, the high recognition accuracy is achieved which is necessary to find the top plane of the vehicles. The algorithms are siutable for real-time applications

    Prejunctional and peripheral effects of the cannabinoid CB1 receptor inverse agonist rimonabant (SR 141716)

    Get PDF
    Rimonabant is an inverse agonist specific for cannabinoid receptors and selective for their cannabinoid-1 (CB1) subtype. Although CB1 receptors are more abundant in the central nervous system, rimonabant has many effects in the periphery, most of which are related to prejunctional modulation of transmitter release from autonomic nerves. However, CB1 receptors are also expressed in, e.g., adipocytes and endothelial cells. Rimonabant inhibits numerous cardiovascular cannabinoid effects, including the decrease of blood pressure by central and peripheral (cardiac and vascular) sites of action, with the latter often being endothelium dependent. Rimonabant may also antagonize cannabinoid effects in myocardial infarction and in hypotension associated with septic shock or liver cirrhosis. In the gastrointestinal tract, rimonabant counteracts the cannabinoid-induced inhibition of secretion and motility. Although not affecting most cannabinoid effects in the airways, rimonabant counteracts inhibition of smooth-muscle contraction by cannabinoids in urogenital tissues and may interfere with embryo attachment and outgrowth of blastocysts. It inhibits cannabinoid-induced decreases of intraocular pressure. Rimonabant can inhibit proliferation of, maturation of, and energy storage by adipocytes. Among the many cannabinoid effects on hormone secretion, only some are rimonabant sensitive. The effects of rimonabant on the immune system are not fully clear, and it may inhibit or stimulate proliferation in several types of cancer. We conclude that direct effects of rimonabant on adipocytes may contribute to its clinical role in treating obesity. Other peripheral effects, many of which occur prejunctionally, may also contribute to its overall clinical profile and lead to additional indications as well adverse event

    Increased CB2 mRNA and anandamide in human blood after cessation of cannabis abuse

    No full text
    In previous studies, long-term cannabis use led to alterations of the endocannabinoid system including an increase in CB1 and/or CB2 receptor messenger RNA (mRNA) in blood cells and an increase in the serum level of the endocannabinoid 2-arachidonoyl glycerol. However, in those studies, cannabis use was stopped only few days before testing or not interrupted at all. Therefore, one cannot decide whether the alterations are due to long-term cannabis abuse or are confounded by acute effects of cannabis. Blood was sampled from donors that had smoked marijuana a parts per thousand yen20 times in their lives but had abstained from cannabis for a parts per thousand yen6 months (high-frequency users, HFU) and from controls (cannabis use a parts per thousand currency sign5 times lifetime). CB1 and CB2 mRNA was determined in peripheral mononuclear blood cells using the reverse transcriptase polymerase chain reaction. Serum anandamide level was assayed using electrospray tandem mass spectrometry. CB2 mRNA was increased by 45 % in HFU when compared to controls, whereas CB1 mRNA did not differ. The anandamide level in HFU exceeded that in controls by 90 %. Tobacco smoking could be excluded as a confounding factor. In conclusion, marijuana users that had smoked marijuana a parts per thousand yen20 times in their lives and stopped cannabis use at least 6 months before the study show an increase in CB2 receptor mRNA in the blood and in serum anandamide level. These alterations resemble those obtained for marijuana smokers that had stopped cannabis use only few days before testing and may be implicated in the pathogenesis of disorders associated with long-term cannabis use
    • …
    corecore