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Abstract Rimonabant is an inverse agonist specific for
cannabinoid receptors and selective for their cannabinoid-1
(CB1) subtype. Although CB1 receptors are more abundant
in the central nervous system, rimonabant has many effects
in the periphery, most of which are related to prejunctional
modulation of transmitter release from autonomic nerves.
However, CB1 receptors are also expressed in, e.g.,
adipocytes and endothelial cells. Rimonabant inhibits
numerous cardiovascular cannabinoid effects, including
the decrease of blood pressure by central and peripheral
(cardiac and vascular) sites of action, with the latter often
being endothelium dependent. Rimonabant may also
antagonize cannabinoid effects in myocardial infarction
and in hypotension associated with septic shock or liver
cirrhosis. In the gastrointestinal tract, rimonabant counter-
acts the cannabinoid-induced inhibition of secretion and
motility. Although not affecting most cannabinoid effects in
the airways, rimonabant counteracts inhibition of smooth-
muscle contraction by cannabinoids in urogenital tissues
and may interfere with embryo attachment and outgrowth
of blastocysts. It inhibits cannabinoid-induced decreases of
intraocular pressure. Rimonabant can inhibit proliferation

of, maturation of, and energy storage by adipocytes.
Among the many cannabinoid effects on hormone secre-
tion, only some are rimonabant sensitive. The effects of
rimonabant on the immune system are not fully clear, and it
may inhibit or stimulate proliferation in several types of
cancer. We conclude that direct effects of rimonabant on
adipocytes may contribute to its clinical role in treating
obesity. Other peripheral effects, many of which occur
prejunctionally, may also contribute to its overall clinical
profile and lead to additional indications as well adverse
events.
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Introduction

Cannabinoids such as Δ9-tetrahydrocannabinol have long
been known as active ingredients of hashish and marijuana
prepared from the plant Cannabis sativa and as such have
been considered drugs of addiction. Meanwhile, it has
become clear that they can act on G-protein-coupled
receptors, and two subtypes of these receptors have been
cloned and designated cannabinoid-1 and -2 (CB1 and
CB2). A formal definition of these receptor subtypes has
been proposed by the International Union of Pharmacology
(Howlett et al. 2002). Endogenous agonists at cannabinoid
receptors (referred to as endocannabinoids) including
anandamide (Devane et al. 1992) or 2-arachidonoylglycerol
(Stella et al. 1997) have been reported.

The term cannabinoids is used in two different meanings
in the literature: chemical and functional. Traditionally, this
term has been used to designate chemically related
compounds isolated from the Cannabis plant (Razdan
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1986). Some of these compounds act on cannabinoid
receptors, whereas others, including cannabidiol, did not
exhibit relevant affinity for these receptors in most studies,
although a recent report has challenged that view (Thomas
et al. 2007). Nowadays, the term cannabinoids is most
frequently used to designate compounds activating canna-
binoid receptors. Although some of these ligands also are
cannabinoids in a chemical sense (e.g., Δ9-tetrahydrocan-
nabinol) or are derived from them (e.g., CP-55,940), others
have an extremely different chemical structure, including
aminoalkylindoles such as WIN 55,212–2 or derivatives of
arachidonic acid such as the endocannabinoids. In this
article, cannabinoids is always used in the second,
functional meaning.

Apart from the role of exogenous cannabinoids in
addiction, endocannabinoids have been implicated to play
an important role in various physiological and pathophys-
iological control mechanisms related, e.g., to energy
metabolism, pain and inflammation, and various psychiatric
and neurologic conditions. Moreover, endocannabinoids
can also play a role outside the central nervous system, e.g.,
in the cardiovascular system, airways, gastrointestinal tract,
eye, reproductive function, and cancer (Kogan and
Mechoulam 2008; Mendizabal and Adler-Graschinsky
2007; Pacher et al. 2006; Wierzbicki 2006). Whereas it
was originally proposed that expression of CB1 receptors is
restricted to the nervous system and, to a lesser extent, the
immune system (Galiegue et al. 1995), their presence can
also be shown in some peripheral tissues other than
prejunctional nerve endings (Shire et al. 1995).

Recently, the CB1 cannabinoid receptor antagonist
rimonabant (formerly known as SR 141716A) (Fig. 1) has
become available for treating obesity in some countries
(Carai et al. 2005; Gelfand and Cannon 2006; Henness et
al. 2006; Wierzbicki 2006). It is also under investigation for
treating drug addiction (Beardsley and Thomas 2005), and

additional possible uses have been proposed (Bifulco et al.
2007). The experimental effects of rimonabant on food
intake, addiction, and other effects in the central nervous
system have recently been reviewed (Boyd and Fremming
2005; Fowler 2005; Shire et al. 1999). In this manuscript
we systematically review rimonabant effects outside the
central nervous system. As many of the peripheral
rimonabant effects are related to a prejunctional inhibition
of transmitter release, prejunctional rimonabant effects,
including those occurring in the central nervous system,
and their molecular and cellular basis are also reviewed.

Direct effects on cannabinoid and other receptors

Rimonabant is a highly specific and selective drug, i.e., it
possesses a high selectivity for CB1 receptors over dozens
of other receptors (Rinaldi-Carmona et al. 1994) and an at
least 100-fold selectivity for CB1 over CB2 receptors
(Gatley et al. 1996; Hurst et al. 2002; Rinaldi-Carmona et
al. 1994; Shire et al. 1996, 1999). This profile is not only
important with respect to the therapeutic use of this drug
but also for basic research, as the effects of cannabinoids
such as anandamide or Δ9-tetrahydrocannabinol may not
always occur via cannabinoid receptors and may also
involve, e.g., vanilloid receptors (Nieri et al. 2003), the
so-called endothelial cannabinoid receptor (Wagner et al.
1999), metabolism to prostanoids (Grainger and Boachie-
Ansah 2001; Pratt et al. 1998), or other, poorly defined,
targets (Carrier et al. 2006; Kenny et al. 2002; White et al.
2001). However, rimonabant acts at noncannabinoid targets
only at very high concentrations (White and Hiley 1998). In
binding studies, rimonabant has an affinity for the CB1

receptor in the low nanomolar range. In functional experi-
ments, rimonabant is not a neutral antagonist but, rather,
has been found to be an inverse agonist at the CB1 receptor
(Landsman et al. 1997; MacLennan et al. 1998; Meschler et
al. 2000; Thomas et al. 2007).

Systematic modification of the amino acid sequence of the
CB1 receptor has allowed a better understanding of which
parts of the receptor are critical for the binding of
rimonabant. Early studies demonstrated that the second
extracellular loop of the receptor, which is important in the
binding of some cannabinoid agonists, does not affect the
binding of rimonabant (Shire et al. 1996). A similar situation
was reported for the first extracellular loop of the receptor
(Murphy and Kendall 2003). Later studies showed that the
fourth and fifth transmembrane domain of the receptor are
relevant for conferring selectivity of rimonabant for the CB1

over the CB2 receptor (Shire et al. 1999). The amino acid
Lys192 appears important in the inverse agonist properties of
rimonabant (Hurst et al. 2002). Other authors have speculat-
ed that rimonabant inhibits the ability of transmembrane
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Fig. 1 Structure of rimonabant [5-(4-chlorophenyl)-1-(2,4-dichloro-
phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide]
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helix 6 to move during formation of the functionally active
receptor state (Fay et al. 2005).

In an attempt to further understand the structural
requirements in the rimonabant molecule that are relevant
for selectivity and affinity of binding to the CB1 receptor
and for the degree of (inverse) efficacy, numerous ana-
logues have been synthesized (Dyck et al. 2004; Francisco
et al. 2002; Jagerovic et al. 2006; Katoch-Rouse et al. 2003;
Lange et al. 2005; Shim et al. 2002; Thomas et al. 1998;
Wiley et al. 2001). Some of these analogues have even
higher affinity for the CB1 receptor than does rimonabant
(Thomas et al. 1998), but whether this results in clinically
superior compounds remains unknown.

A tritiated form of rimonabant has been synthesized and
is commercially available as a radioligand (Hirst et al.
1996). This has proven useful in studies characterizing
CB1-receptor ligands (Brizzi et al. 2005; Muccioli et al.
2005) or the presence of CB1 receptors in various tissues
and cells (Hirst et al. 1996; Jung et al. 1997). This
radioligand has also been used to investigate possible
differences in receptor interaction between agonists and
antagonists at the CB1 receptor (Petitet et al. 1996).

Cellular effects

Inhibition of cyclic adenosine monophosphate (cAMP) for-
mation, mediated by Gi proteins, is a prototypical signaling
response of CB1 receptors (Glass and Northup 1999).
Accordingly, rimonabant inhibits cannabinoid-induced reduc-
tions of cAMP accumulation in cells transfected with CB1

receptors (Calandra et al. 1999; Rinaldi-Carmona et al. 1994;
Stamer et al. 2001) but not in those transfected with CB2

receptors (Rinaldi-Carmona et al. 1994). The cannabinoid-
induced inhibition of cAMP accumulation in astrocytes was
also not affected by rimonabant, indicating that these cells
possibly preferentially express CB2 receptors (Sagan et al.
1999). Rimonabant also antagonizes the cannabinoid-induced
inhibition of cAMP formation in various brain regions of the
rat (Cadogan et al. 1997; Jung et al. 1997; Maneuf and
Brotchie 1997; Mato et al. 2002; Rinaldi-Carmona et al.
1994), mouse (Sagan et al. 1999), guinea pig (Schlicker et al.
1997), and human (Mato et al. 2002) or in neuronal cells
derived thereof. Antagonism of inhibition of cAMP forma-
tion has also been observed in peripheral tissues such as the
rat vas deferens (Pertwee et al. 1996c) or the trabecular
meshwork and ciliary process of the human eye (Stamer et al.
2001). Whereas some studies report that rimonabant does not
affect intracellular cAMP levels in the absence of exogenous
cannabinoids (Rinaldi-Carmona et al. 1994; Schlicker et al.
1997), others have found cAMP elevations upon in vitro or in
vivo treatment with rimonabant (Mato et al. 2002; Rubino et
al. 2000). Interestingly, rimonabant treatment was also found

to activate protein kinase A (Rubino et al. 2000; Tzavara et
al. 2000). Whether this represents antagonism of effects of
endocannabinoids and/or the inverse agonist properties of
rimonabant has not been well established (see below).
Moreover, rimonabant-precipitated cannabinoid withdrawal
is accompanied by an increased adenylyl cyclase activity in
the mouse brain (Tzavara et al. 2000).

Besides inhibition of cAMP formation, which has been
shown to underlie some functional CB1 effects (Kim and
Thayer 2001), three other main signaling mechanisms
coupled to Gi/o proteins have been shown. Thus, cannabi-
noids inhibit calcium ion (Ca2+) influx via voltage-dependent
Ca2+ channels in rat superior cervial ganglion neurones
expressing CB1 receptors (Pan et al. 1998) and via N- and P/
Q-type voltage-dependent Ca2+ channels in cultured rat
hippocampal neurones (Twitchell et al. 1997). Rimonabant
antagonized this effect in both studies, and when given
alone, even increases voltage-dependent Ca2+ influx in the
former model. Moreover, cannabinoids activate potassium
ion (K+) efflux via voltage-gated inwardly rectifying K+

channels in a Xenopus oocyte expression system. This effect
is antagonized by rimonabant, which, by itself, decreases K+

efflux (McAllister et al. 1999). Finally, cannabinoids activate
mitogen-activated protein kinases in Chinese hamster ovary
cells expressing the human CB1 receptor. This effect is again
antagonized by rimonabant (Bouaboula et al. 1995).

In addition, cannabinoid-induced effects are coupled to a
variety of other transduction mechanisms. For example,
rimonabant was found to inhibit cannabinoid-induced
elevations of intracellular Ca2+ concentrations in CB1-
receptor-transfected human embryonic kidney (HEK) 293
cells (Lauckner et al. 2005), cultured hippocampal neurones
(Lauckner et al. 2005), or NG108–15 neuroblastoma cells
(Sugiura et al. 1996). Interestingly, such Ca2+ elevations
may involve Gq rather than Gi proteins and also a
phospholipase C (Lauckner et al. 2005). Rimonabant can
also antagonize the cannabinoid-induced inhibition of Ca2+

uptake into rat brain synaptosomes or NG108–15 cells,
possibly also independent of Gi proteins (Rubovitch et al.
2002; Yoshihara et al. 2006). Rimonabant also inhibited the
cannabinoid-induced activation of protein kinase B in
prostate cancer cells (Sanchez et al. 2003a) and extracellu-
lar signal-regulated kinase in 3T3 F442A murine preadipo-
cytes (Gary-Bobo et al. 2006), rat arteries (Su and Vo
2007), and human endothelial cells (Liu et al. 2000).
Whereas rimonabant antagonized cannabinoid effects on
the delayed rectifier K+ current (IK) in rat hippocampal
neurones (Hampson et al. 2000), cannabinoid effects on
shaker-related voltage-gated K+ channels (Poling et al.
1996), on TASK-1 standing-outward K+ currents (Maingret
et al. 2001) or on delayed rectifier K+ channels in smooth
muscle of the rat aorta (Van den Bossche and Vanheel
2000) showed only partial, if any, rimonabant sensitivity.
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Effects on transmitter release

Based upon the expression of cannabinoid receptors in
various types of central (Shire et al. 1999) and peripheral
neurones (Storr et al. 2004), numerous studies have
investigated the effects of cannabinoids and rimonabant
on transmitter release. Most of these studies were done on
the central nervous system and focused on the release of
noradrenaline, serotonin, dopamine, acetylcholine, gamma
aminobutyric acid (GABA), and glutamate (described in
this section). A series of studies was dedicated to
noradrenaline and acetylcholine release from sympatheti-
cally and parasympathetically innervated tissues, respec-
tively (see subsequent sections).

The release of noradrenaline is inhibited by cannabinoids
in the human hippocampus (Schlicker et al. 1997) and in
the hippocampus and other brain regions of the guinea pig
(Kathmann et al. 1999; Schlicker et al. 1997). The
inhibitory effect was antagonized by rimonabant, suggest-
ing that a CB1 receptor is involved. As the cannabinoid-
induced effect and antagonism by rimonabant were retained
in the guinea pig hippocampus under conditions not
allowing propagation of impulse flow, one can assume that
the CB1 receptors are located prejunctionally on the
noradrenergic neurones themselves.

An example how a CB1 receptor is identified in detail is
given in Fig. 2. Noradrenaline release in the guinea pig

hippocampus is concentration-dependently inhibited by the
cannabinoid receptor agonist WIN 55,212–2, whereas even
an extremely high concentration of its inactive enantiomer
(the compound WIN 55,212–3) is without effect. The
concentration-response curve of WIN 55,212–2 is shifted to
the right by rimonabant, yielding an apparent pA2 value of
8.2, which is close to that described for CB1 receptors in the
literature (8.0–8.2) (Rinaldi-Carmona et al. 1994). On the
other hand, the apparent pA2 value of 5.9 of the selective CB2

receptor inverse agonist SR 144528 was lower by more than
three orders of magnitude than its pKi value at CB2 receptors
(9.2) (Rinaldi-Carmona et al. 1998). Figures 2 and 3 show
that in the absence of exogenous cannabinoids, rimonabant
enhanced noradrenaline release in the guinea pig hippocam-
pus but failed to do so in the human hippocampus or in other
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Fig. 2 Effect of various cannabinoid receptor ligands on electrically
evoked tritium overflow from the guinea pig hippocampal slices
preincubated with 3H-noradrenaline. Tritium overflow corresponds to
quasi-physiological noradrenaline release. Noradrenaline release was
inhibited by the cannabinoid receptor agonist WIN 55,212–2 but not
by a high concentration of its inactive enantiomer WIN 55,212–3. The
concentration-response curve of WIN 55,212–2 was shifted to the
right by a low concentration of the CB1 receptor inverse agonist
rimonabant but was hardly affected even by a high concentration of
the CB2 receptor inverse agonist SR 144528. When given alone,
rimonabant facilitated noradrenaline release, whereas SR 144528 had
no effect. From Schlicker et al. (1997) and Szabo and Schlicker (2005)
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Fig. 3 Effect of rimonabant 0.32 μM on the electrically evoked
tritium overflow in a variety of superfused tissues from guinea pig
(open columns), mouse (hatched columns), and humans (black
column). Experiments were carried out on the aorta, atrium (Atr),
basilar artery (BA), cerebellum (Cere), cerebral cortex (CC), hippo-
campus (Hi), hypothalamus (Hypo), portal vein (PoV), pulmonary
artery (PuA), retina (Ret), and vas deferens (VD). Tissues were labeled
with 3H-noradrenaline (if not stated otherwise), 3H-choline (ACh), 3H-
dopamine (DA), or [3H]serotonin (5-HT). Tritium overflow corre-
sponds to the release of noradrenaline, acetylcholine, dopamine, and
serotonin. Note that rimonabant (1) facilitated noradrenaline release in
the guinea pig but not in the human hippocampus, (2) facilitated
noradrenaline or acetylcholine release in the hippocampus of the
guinea pig and mouse but failed to do so in the cerebral cortex of the
respective species, and (3) had a facilitating effect in the vas deferens
but was without effect in cardiovascular tissues. *P<0.05, compared
with the corresponding control (not shown). From Kathmann et al.
(2001a), Kurz et al. (2008), Nakazi et al. (2000), Schlicker et al.
(1996, 1997, 2003), Schultheiss et al. (2005) and unpublished data
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brain regions of the guinea pig (Kathmann et al. 1999;
Schlicker et al. 1997). A facilitating effect of rimonabant was
also found in the rat medial prefrontal cortex and nucleus
accumbens (Tzavara et al. 2003).

With respect to the effect of cannabinoids on noradren-
aline release, marked species differences occurred, as
cannabinoids were devoid of an effect in the hippocampus
of the rat and mouse (Gifford et al. 1997; Schlicker et al.
1997). In an in vivo model, peripherally administered
cannabinoids even increased the activity of noradrenergic
neurones, i.e., enhanced the firing rate of noradrenergic
neurones of the locus coeruleus in a rimonabant-sensitive
manner (Mendiguren and Pineda 2006), whereas locally
administered cannabinoids were without an effect. The
explanation for this phenomenon may be that the cannabi-
noid receptors involved are located on an inhibitory
neurone projecting to the locus coeruleus. Cannabinoids
also affect noradrenaline release from sympathetic neuro-
nes, and the corresponding studies are described in sections
related to the respective peripheral tissues.

The effects of cannabinoids and rimonabant on serotonin
release have been rarely studied. A cannabinoid-related
inhibition of serotonin release was found in the hippocam-
pus of the mouse in vitro. This effect was counteracted by
rimonabant, which, however, did not affect serotonin
release by itself (Nakazi et al. 2000) (Fig. 3). On the other
hand, rimonabant facilitated serotonin release in the medial
prefrontal cortex and nucleus accumbens of the rat in vivo
(Tzavara et al. 2003).

Based upon the role of the dopaminergic system in
addiction, several studies have investigated cannabinoid
effects on dopaminergic neurotransmission. Studies on the
role of cannabinoids on dopamine release in the central
nervous system have been less consistent than those on
other transmitters, as, depending on the experimental
system, a facilitating or inhibitory effect of cannabinoids
on dopamine release (or a related parameter) was found. In
the mesolimbic dopamine system, which is the molecular
substrate for addiction, cannabinoids were reported to
increase the firing rate of dopaminergic neurones (Cheer
et al. 2000, 2003; Diana et al. 1998; French 1997; Pistis et
al. 2001) or to increase dopamine release in vivo (Cheer et
al. 2004). Rimonabant, which inhibits such effects of
exogenous agonists, apparently does not alter dopamine
release (Cheer et al. 2004) or the firing rate of dopaminergic
neurones in the absence of exogenous cannabinoids (Cheer
et al. 2000, 2003; Diana et al. 1998; French 1997; Pistis et
al. 2001). The cannabinoid-induced increase in dopamine
release and firing rate of dopaminergic neurones may be
related to activation of inhibitory cannabinoid receptors
located on tonically active inhibitory (GABAergic) inter-
neurones synapsing with the dopaminergic neurones in the
ventral tegmental area. The phenomenon that addictive

drugs that activate prejunctional inhibitory receptors none-
theless facilitate dopamine release is also true for µ opioid
receptor agonists such as morphine; the latter compounds
again act via “inhibition of the inhibitor” (GABAergic
interneurones).

The situation is even somewhat more complicated with
respect to another dopaminergic tract, namely, the nigros-
triatal system. Whereas in vitro studies in the rat striatum
showed rimonabant-sensitive inhibitory effects of exoge-
nous cannabinoids (Cadogan et al. 1997; Kathmann et al.
1999), in vivo studies in the same tissue reported
stimulatory effects (Malone and Taylor 1999). The canna-
binoid receptors in the latter model may be located on
GABAergic interneurones synapsing with the dopaminergic
perikarya. In addition, one has to assume that the increase
in firing rate may offset the prejunctional inhibition of
dopamine release occurring at the level of the dopaminergic
axon terminals. Interestingly, dopamine D2 receptor ago-
nists enhance the release of endocannabinoids in the rat
striatum, indicating the possible presence of a feedback
loop (Giuffrida et al. 1999). An influence of cannabinoids
on dopamine release (or the firing of dopaminergic neuro-
nes) has also been found in another two dopamine systems.
Thus, cannabinoids increased the firing rate of the rat
mesocortical system in a manner sensitive to rimonabant,
which was ineffective in the absence of an exogenous
agonist (Diana et al. 1998). Again, the prejunctional
receptors may be located on a GABAergic interneurone.
Moreover, cannabinoids inhibited dopamine release from
guinea pig retinal cells in a manner sensitive to rimonabant.
The latter very markedly facilitated dopamine release when
given alone (Schlicker et al. 1996) (Fig. 3).

Many studies have been done related to acetylcholine
release both in the peripheral nervous system (see below in
sections related to the various tissues) and in the brain. In
general, cannabinoids inhibit acetylcholine release, and
rimonabant antagonizes this effect, suggesting that acetylcho-
line release is under the control of a prejunctional inhibitory
CB1 receptor. The inhibitory effects of cannabinoids on
acetylcholine release are absent in CB1-receptor knockout
mice (Degroot et al. 2006; Kathmann et al. 2001b; Schlicker
et al. 2003), corroborating the findings with rimonabant that
demonstrate mediation via a CB1 receptor. However, it
should be mentioned that cannabinoids did not inhibit
acetylcholine release in some studies in the rat nucleus
accumbens (Gifford and Ashby 1996; Tzavara et al. 2003) or
striatum (Gifford et al. 1997), and in some in vivo settings,
they even enhanced release in rats. The latter effect was
similarly sensitive to rimonabant as the inhibition of
acetylcholine release (Acquas et al. 2000, 2001). Again,
the explanation may be that the cannabinoid receptors are
not located directly on the cholinergic neurone but on an
inhibitory interneurone projecting to the cholinergic neurone.
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Interestingly, rimonabant does not only antagonize the
effects of exogenous cannabinoids on acetylcholine release,
but in some cases, although not consistently, influences
acetylcholine release in a manner opposite to that of the
exogenous agonist (Fig. 3). Generally, this phenomenon
may reflect antagonism of endogenously present cannabi-
noids or may be related to the inverse agonist properties of
rimonabant. In other words, this may point to the fact that
the receptors are constitutively active (Fig. 4). Evidence for
the former possibility (Fig. 4A,B) was presented for the CB1

receptor, leading to the inhibition of acetylcholine release in
human cerebral cortex slices (Steffens et al. 2003). In this
preparation, AM 404, an endocannabinoid uptake inhibitor,
inhibited acetylcholine release, most probably due to the
fact that the amount of endocannabinoids in the synaptic
cleft was further increased because the mechanism for
removal of the endocannabinoids (the sink) was blocked.
Moreover, O-1184, a partial CB1-receptor agonist without
inverse agonist properties, facilitated acetylcholine release,
most probably due to the fact that the latter drug behaved as
an antagonist toward the endocannabinoids accumulating in
the biophase of the receptor. Evidence for the second
possibility (Fig. 4C,D) comes from the study by Gifford et
al. (2000) in which acetylcholine release was studied in rat
hippocampal synaptosomes, i.e., in isolated nerve endings
in which endogenously formed cannabinoids (if present)
are efficiently removed by the superfusion stream and
therefore cannot accumulate in the receptor biophase.
Unfortunately, experiments of that type have been carried
out only in a few models, and therefore, a decision as to
whether the first, the second, or both mechanism(s) is (are)
involved cannot be reached.

CB1 receptors have been found on axon terminals of
neurones containing the inhibitory transmitter GABA, e.g.,
in the hippocampus (Katona et al. 1999; Tsou et al. 1999).
Cannabinoids have consistently been found to inhibit
GABA release, and rimonabant was consistently reported
to antagonize this effect. Such findings were obtained in
vitro and in vivo in several brain areas including cerebral
cortex, hippocampus, and cerebellum both in mice (Engler
et al. 2006) and rats (Chan and Yung 1998; Ferraro et al.
2001a; Hajos et al. 2000; Kofalvi et al. 2005; Paton et al.
1998; Pistis et al. 2002; Szabo et al. 2002; Wilson and
Nicoll 2001).

The effects of cannabinoids and rimonabant on the
release of the excitatory transmitter glutamate have been
examined in mice (Freiman and Szabo 2005; Hoffman et al.
2005; Kofalvi et al. 2003, 2005) and rats (Brown et al.
2003; Gerdeman and Lovinger 2001; Hoffman et al. 2003;
Huang et al. 2001; Levenes et al. 1998). Whereas one study
found a cannabinoid-induced enhancement of glutamate
release in the rat prefrontal cortex in vitro and in vivo
(Ferraro et al. 2001b) and another one reported a cannabi-
noid-induced elevation of glutamate levels in primary
cultures of rat cerebral cortex neurones (Tomasini et al.
2002), the vast majority of studies reported inhibition of
glutamate release by cannabinoids (Brown et al. 2003;
Freiman and Szabo 2005; Gerdeman and Lovinger 2001;
Hoffman et al. 2005; Huang et al. 2001; Kofalvi et al. 2003,
2005; Levenes et al. 1998; Slanina and Schweitzer 2005).
Both the stimulatory and the inhibitory cannabinoid effects
on glutamate release were rimonabant sensitive, indicating
that CB1 receptors are involved in both instances. The
reason for the differential influence of cannabinoids on

Fig. 4 Two explanations for the
facilitating effect of rimonabant
on transmitter release. The first
explanation says that endocanna-
binoids (blue symbols) are accu-
mulating in the biophase of the
cannabinoid CB1 receptors,
thereby reducing transmitter re-
lease (A). Addition of rimona-
bant (red symbols) attenuates the
extent of inhibition due to its
competitive antagonism (B).
The second explanation says that
the receptors are constitutively
active, i.e., they occur in the
active state (R*) coupled to Gi/o

proteins, eventually reducing
transmitter release (C). Addition
of the inverse agonist rimonabant
isomerizes the receptor to the
state not coupled to Gi/o proteins
(R, broken circles). Therefore,
the constitutive inhibition is lost,
and facilitation is observed (D)
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glutamate release might be that the CB1 receptor leading to
the facilitation of glutamate release is not located on the
glutamatergic neurone itself but rather on an interpolated
inhibitory interneurone. In the study by Slanina and
Schweitzer (2005) in which cannabinoids had an inhibitory
effect on glutamate release, rimonabant facilitated gluta-
mate release in the absence of exogenously added canna-
binoids, suggesting that the CB1 receptor in this model is
subject to an endogenous tone. Finally, there is evidence
from studies with CB1-receptor knockout mice that the CB1

receptor may not be the sole receptor involved in
cannabinoid-induced inhibition of glutamate release
(Kofalvi et al. 2003, 2005). Thus, WIN 55,212–2 inhibited
glutamate release also in CB1-receptor-deficient mice
(Kofalvi et al. 2003, 2005), and the effect of WIN
55,212–2 was counteracted by rimonabant (Hajos et al.
2001).

Although a rimonabant-sensitive effect of cannabinoids
on GABA and glutamate release has been found in many
studies [for a more complete review, see Szabo and
Schlicker (2005)], rimonabant had an effect of its own in
very few studies only. For example, in the paper by Slanina
and Schweitzer (2005) in which cannabinoids had an
inhibitory effect on glutamate release, rimonabant facilitat-
ed glutamate release in the absence of exogenously added
cannabinoids, suggesting that the CB1 receptor in this
model is subject to an endogenous tone. The reason why
rimonabant had no effect of its own in most studies might
be that an endogenous tone is rarely associated with CB1

receptors affecting GABA and glutamate release. Another
(and perhaps more plausible) explanation might be that the
vast majority of studies dedicated to GABA and glutamate
was carried out with the patch-clamp technique, i.e., with
single cells, and that a slight endogenous tone might be
overlooked under this experimental scenario.

There is increasing evidence that the CB1 receptors
leading to the inhibition of GABA or glutamate release are
implicated in a local feedback loop, referred to as
depolarization-induced suppression of inhibition and exci-
tation (DSI and DSE, respectively). This phenomenon [for
a more complete review, see Vaughan and Christie (2005)]
means that depolarization of the postsynaptic membrane
leads to the formation and subsequent release of endocan-
nabinoids that, after having passed the synaptic cleft,
activate the inhibitory prejunctional CB1 receptors of the
preceding GABAergic or glutamatergic neurone. This
phenomenon of backward signaling appears to be unique
to the latter neurones. It has so far not been shown for other
transmitters either in the central or peripheral nervous
system.

Taken together the overall data suggest that cannabi-
noids, acting on CB1 receptors, inhibit transmitter release in
the central nervous system. Interestingly, this applies

similarly to excitatory transmitters such as glutamate and
inhibitory transmitters such as GABA. The rationale for
inhibiting two physiologically opposing transmitter systems
remains to be elucidated. One has to consider, however, that
the distribution of CB1 receptors differs markedly. For
example, cholinergic neurones in the mouse hippocampus
are endowed with CB1 receptors subject to an endogenous
tone. Such an endogenous tone is, however, missing at the
CB1 receptors on the cholinergic neurones in the cerebral
cortex. Finally, striatal cholinergic neurones are not
endowed with prejunctional CB1 receptors at all (Schlicker
et al. 2003). Cannabinoids, as with other drugs leading to
addiction, markedly increase the firing rate of dopaminergic
neurones projecting from the ventral tegmental area to the
nucleus accumbens. This phenomenon (probably related to
activation of CB1 receptors on a GABAergic interneurone)
may represent the cellular substrate of the addictive effects
of cannabinoids.

Cardiovascular effects

The cardiovascular system is one of the peripheral tissues
expressing CB1 receptors on cell types other than prejunc-
tional nerve endings. Whereas one study reported the
presence of CB1-receptor messenger ribonucleic acid
(mRNA) on vascular smooth muscle cells (Sugiura et al.
1998), other investigators largely failed to confirm this
(Domenicali et al. 2005). A recent report on human
coronary vascular smooth muscle also has detected CB1-
receptor mRNA but only at low levels (Rajesh et al. 2008),
possibly explaining why this has not been consistently seen
in earlier studies. On the other hand, the expression of CB1

receptors has repeatedly been shown at the mRNA and
protein level in endothelial cells from various vascular beds
of rats (Domenicali et al. 2005; Lepicier et al. 2007) and
humans (Liu et al. 2000; Rajesh et al. 2007; Sugiura et al.
1998), although the evidence is not unequivocal
(McCollum et al. 2007). Messenger RNA and immunore-
activity for CB1 receptors has also been reported from
murine cardiomyocytes (Mukhopadhyay et al. 2007; Pacher
et al. 2005). Thus, in the cardiovascular system, cannabi-
noids and rimonabant may act not only by central and
prejunctional peripheral mechanisms but also by direct
endothelial effects and, perhaps, at the levels of vascular
smooth-muscle cells and cardiomyocytes.

Numerous studies have investigated the effects of
cannabinoids and rimonabant on cardiovascular function.
Upon systemic administration, they can affect blood
pressure regulation under both normal and pathophysiolog-
ical conditions. Some studies suggest that cannabinoids can
cause brief pressor responses followed by longer-lasting
depressor responses, of which only the latter appear to be
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rimonabant sensitive (Malinowska et al. 2001a; Varga et al.
1995). With few exceptions (Wang et al. 2005), the vast
majority of studies in rats (Batkai et al. 2004b; Garcia et al.
2001; Niederhoffer et al. 2003; Varga et al. 1995), mice
(Jarai et al. 2000), rabbits (Niederhoffer and Szabo 1999),
and guinea pigs (Calignano et al. 1997a) reported exogenous
cannabinoids to reduce blood pressure in a rimonabant-
sensitive manner. A cannabinoid-induced, rimonabant-
sensitive lowering of heart rate has been reported in mice
(Jarai et al. 2000), and an anandamide-induced rimonabant-
sensitive lowering of cardiac contractility has been shown in
mice (Pacher et al. 2004) and, based upon elevations of
endogenous anandamide levels, proposed in doxorubicin-
induced cardiotoxicity (Mukhopadhyay et al. 2007). A similar
effect, which was sensitive to the CB1 antagonist AM251, has
been reported in rats with liver cirrhosis (Batkai et al. 2007).

Blood pressure alterations could, in principle, result
from effects on the brain, heart, vasculature, or—at least
in chronic studies—the kidney. Whereas reports on
acute rimonabant effects on renal function surprisingly
are lacking to the best of our knowledge, despite the
presence of CB1 receptors in the kidney (Engeli et al.
2005), one recent study reported that a 12-months
treatment of obese Zucker rats with rimonabant (3 and
10 mg/kg per day) does not alter renal blood flow but
attenuates proteinuria and lowers plasma creatinine while
improving glomerular filtration rate (Janiak et al. 2007).
Nonrenal effects on blood pressure have been addressed in
several studies. The possibility of centrally mediated
cardiovascular cannabinoid effects is emphasized by
studies showing blood pressure increases upon intra-
cisternal injection to rats (Pfitzer et al. 2004) or rabbits
(Niederhoffer and Szabo 2000), or blood pressure reduc-
tion upon intrathecal injection to rats (del Carmen Garcia
et al. 2003). Whereas all of these effects were rimonabant
sensitive, it remains to be determined whether the
conflicting observations relate to the site of administration
or other factors.

A rimonabant-sensitive decrease of the neurogenic
vasopressor response following peripheral administration
of cannabinoids has been reported from pithed animals
(Malinowska et al. 1997; Niederhoffer and Szabo 1999),
suggesting that cannabinoid-induced blood pressure lower-
ing can occur independent of the central nervous system.
Rimonabant-sensitive blood pressure lowering in pithed
animals was typically accompanied by a reduced noradren-
aline spillover into the general circulation (Niederhoffer et
al. 2003; Niederhoffer and Szabo 1999), indicating a
possible prejunctional site of action. Further evidence for
the prejunctional location comes from experiments in
pithed rats and rabbits, where the cannabinoid agonist
WIN 55212–2, although lowering blood pressure in
animals with electrical stimulation of sympathetic nerves,

i.e. upon release of endogenous noradrenaline, did not
affect blood pressure upon administration of exogenous
noradrenaline (Malinowska et al. 1997; Niederhoffer and
Szabo 1999; Pfitzer et al. 2005). The situation is further
complicated by the fact that cannabinoids also inhibit
neurogenic vasodilatation in a rimonabant-sensitive manner
(Duncan et al. 2004; Ralevic and Kendall 2001).

Findings that rimonabant-sensitive cannabinoid-induced
blood pressure lowering was accompanied by reduced
cardiac function (Batkai et al. 2004b; Malinowska et al.
2001b; Niederhoffer et al. 2003) and/or decreased periph-
eral resistance (Batkai et al. 2004b; Garcia et al. 2001) may
suggest that some of the cannabinoid-induced cardiovascu-
lar effects may occur at the cardiac and/or vascular level, a
possibility that has been directly investigated in numerous
studies.

In line with in vivo observations of reduced cardiac
contractility upon cannabinoid administration, it was
reported that cannabinoids can also exert rimonabant-
sensitive negative inotropic effects in the Langendorff-
perfused rat heart (Krylatov et al. 2005). Studies in rat
models of heart failure (Mukhopadhyay et al. 2007) or liver
cirrhosis (Batkai et al. 2007) in which endogenous
anandamide concentrations increase and cardiac contractil-
ity is improved by rimonabant or other CB1 antagonists
further support a role of this receptor in regulating inotropic
functions. The vast majority of studies with isolated
cardiovascular tissues were performed with blood vessels.
With very few exceptions (O’Sullivan et al. 2005),
exogenous cannabinoids have routinely been reported to
cause dilatation of isolated blood vessels in a variety of
species (Table 1). All responses listed in Table 1 were
rimonabant sensitive, including the rarely reported vaso-
constriction (O’Sullivan et al. 2005), whereas in a few
preparations, cannabinoid-induced vasodilatation was in-
sensitive to rimonabant (Grainger and Boachie-Ansah
2001; Plane et al. 1997; Pratt et al. 1998; White et al.
2001). Conflicting findings have been reported regarding a
potential role of the endothelium in vasodilatation. Whereas
some studies found cannabinoid-induced vasodilatation to
be endothelium independent, others reported it to be at least
partly endothelium dependent (Table 1). Rimonabant was
typically found to inhibit both the endothelium-dependent
and -independent vasodilatation (Table 1). A role of
endocannabinoids in the endothelium is further supported
by findings that they stimulate Ca2+ influx in cerebromi-
crovascular endothelial cells in a rimonabant-sensitive
manner (Golech et al. 2004). Moreover, rimonabant inhibits
cannabinoid-induced activation of extracellular signal-
regulated kinase (Su and Vo 2007) and nitrous oxide
(NO) formation in blood vessels (Poblete et al. 2005), and
NO synthase inhibitors can attenuate cannabinoid-induced
vasodilatation (Ho and Hiley 2003). However, rimonabant-
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sensitive cannabinoid-induced vasodilatation has also been
observed in the presence of NO synthase inhibition
(Zygmunt et al. 1997). Taken together, these findings
demonstrate that cannabinoids and rimonabant can affect
vascular function not only by prejunctional inhibition of
neurotransmitter release but also via direct effects on the
endothelium. This raises the intriguing possibility that the
endothelium may be one of the peripheral tissues under
the direct control of endocannabinoids.

The type of receptor or mechanism involved in the
effects of the endocannabinoids on the endothelium is,
however, not well understood. Table 1 shows that in almost
all models, high concentrations of rimonabant (≥1 μM)

were necessary for antagonism, i.e., concentrations much
higher than those used in true CB1-receptor models,
including that shown in Fig. 2 in which a concentration of
0.032 μM was effective. A poor rimonabant sensitivity was
also found for the cannabinoid-induced Ca2+ elevations in
endothelium-derived cell lines, possibly involved in the
endothelial effects of the cannabinoids (Mombouli et al.
1999). Although in some of the models listed in Table 1 a
true CB1 receptor may be involved, other mechanisms
appear to be more plausible for part of the other
cannabinoid-related effects. In some vascular preparations,
including the rat mesenteric artery, a special endothelial
anandamide receptor may be involved (Ho and Hiley 2003;

Table 1 Effects of cannabinoids and rimonabant on blood vessels

Vessel Species Cannabinoid-
induced
effect

Dependent
on
endothelium

Antagonism
by
rimonabant

Comment References

Aorta Rabbit – Yes 1 μM CB1 receptor not involved Mukhopadhyay et
al. (2002)

Coronary artery Rat – Yes 2 μM CB1 receptor possible but not
likely

Fulton and Quilley
(1998)

– ? 3 mg/kg In vivo study (coronary blood
flow studied); CB1 receptor
possible

Wagner et al.
(2001b)

Cerebral blood flow Rat – ? 3 mg/kg CB1 receptor possible Wagner et al.
(2001b)

Mesenteric artery Rabbit – Yes 10 μM Cannabinoids act directly
on gap junctions

Chaytor et al.
(1999)

* Yes 30 μM CB1 receptor possible Fleming et al.
(1999)

– No 1–3 μM CB1 receptor unlikely Kagota et al. (2001)
Rat – Yes 3 μM CB1 receptor possible but

not likely
Ishioka and
Bukoski (1999)

Yes 0.5–5 μM Endothelial cannabinoid receptor;
rimonabant increases perfusion
pressure in rats pretreated with
lipopolysaccharide

Wagner et al.
(1999)

Yes 1–3 μM Endothelial cannabinoid
receptor

Ho and Hiley
(2003)

Yes 3 μM Endothelial cannabinoid
receptor?

Hoi and Hiley
(2006)

No 1 μM CB1 receptor unlikely White and Hiley
(1997a)

No 3 μM CB1 receptor possible
but not likely

Domenicali et al.
(2005)

+ Yes 0.1 μM CB1 receptor possible O’Sullivan et al.
(2005)

Mouse – Yes 1 μM Endothelial cannabinoid
receptor

Jarai et al. (1999)

Hepatic artery Rat – No 3 μM CB1 receptor possible Zygmunt et al.
(1997)

Iuxtamedullary
afferent arterioles

Rat – ? 1 μM CB1 receptor possible Deutsch et al.
(1997)

+ Constriction, – dilatation, * inhibition of acetylcholine- or bradykinin-induced vasodilatation, ? not tested
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Hoi and Hiley 2006; Jarai et al. 1999; Wagner et al. 1999).
This receptor, although not affected by the standard
cannabinoid receptor agonist WIN 55,212–2, is activated
by anandamide and abnormal cannabidiol, a synthetic
derivative of the naturally occurring cannabidiol. The latter
drug acts as an antagonist at this receptor, which has,
however, so far not been cloned. In another model, the
mesenteric artery of the rabbit, anandamide and its stable
analogue methanandamide cause relaxation by a special
mechanism involving the gap junctions (Chaytor et al.
1999). Rimonabant possesses a low potency as an antag-
onist both for the endothelial anandamide receptor and for
the gap-junction-related vasodilatory mechanism.

Whereas all of the above studies on vascular tone used
administration of exogenous cannabinoids, several other
studies tested vascular rimonabant effects in the absence of
exogenously added cannabinoids. Some of these studies,
particularly when using high rimonabant concentrations,
reported effects that apparently are unrelated to CB1

receptors, as they were also observed in CB1 knockout
mice (Bukoski et al. 2002) or failed to be mimicked by
other CB1-receptor antagonists (Stanford et al. 2001). Such
nonspecific effects may occur, e.g., by direct effects on
Ca2+ channels (White and Hiley 1998). On the other hand,
rimonabant may also affect vascular tone in the absence of
exogenous cannabinoids by mechanisms involving CB1

receptors. For example, Ca2+-induced vasodilatation in rat
isolated mesenteric vessels can be inhibited by rimonabant
and enhanced by an inhibitor of anandamide metabolism
(Ishioka and Bukoski 1999). Similarly, rimonabant was also
shown to inhibit the endothelium-dependent vasodilatation
induced by K+-channel openers in rat mesenteric arteries
(White and Hiley 1997b). On the other hand, rimonabant
did not affect K+-channel opener-induced vasodilatation in
rat coronary vessels (Fulton and Quilley 1998). Taken
together, these data indicate the possibility that some agents
may generate the formation and release of endocannabi-
noids, which then act on CB1 receptors, possibly on the
endothelium, to cause vasodilatation. Indeed, it has been
speculated that endocannabinoids such as anandamide or 2-
arachidonoylglycerol may be the elusive endothelium-
derived hyperpolarizing factor (Randall et al. 1996; Randall
and Kendall 1997). However, further studies are necessary
to confirm this hypothesis [which has been questioned, e.g.,
by Kagota et al. (2001)] and to exclude that artefacts of
high rimonabant concentrations have led to erroneous
conclusions.

On the other hand, it is possible that endocannabinoids
and CB1 receptors play a role in pathophysiological
settings. This has been investigated in a variety of models.
For example, exogenous cannabinoids were found to
reduce mean arterial pressure to a greater extent in rats
fed a high-sodium diet compared with those with normal

sodium, and such blood pressure lowering was rimonabant
sensitive (Wang et al. 2005). The roles of cannabinoids and
rimonabant have also been explored with regard to cardiac
arrhythmia and myocardial infarction. Whereas anandamide
was found to reduce adrenaline-induced arrhythmia in rats,
this was not sensitive to rimonabant (Ugdyzhekova et al.
2000, 2001). Exogenously added endocannabinoids such as
anandamide were also reported to reduce ischemia/reperfu-
sion damage in the isolated rat heart. Whether other
endocannabinoids such as 2-arachidonoylglycerol or syn-
thetic cannabinoids mimic this effect has not been fully
resolved, but the majority of studies suggests so (Lepicier et
al. 2003, 2007; Underdown et al. 2005; Wagner et al.
2001a, 2006). The beneficial effects of ischemic precondi-
tioning (Bouchard et al. 2003) or of exogenous cannabi-
noids (Joyeux et al. 2002; Lagneux and Lamontagne 2001;
Lepicier et al. 2003, 2007; Underdown et al. 2005) were
consistently blocked by CB2 antagonists such as SR
144528. In contrast, rimonabant either had no effect
(Joyeux et al. 2002; Lagneux and Lamontagne 2001),
blocked the protection by some but not other cannabinoids
(Bouchard et al. 2003; Lepicier et al. 2003), or, in a few
studies, was similarly effective as a CB2 antagonist
(Bouchard et al. 2003; Underdown et al. 2005). Accord-
ingly, it has been proposed that protection against ischemia/
reperfusion injury is largely mediated by CB2 receptors
(Pacher and Hasko 2008). Apart from acute heart failure in
the context of myocardial ischemia, a shock syndrome can
also occur after massive hemorrhage or due to sepsis, the
latter being mimicked by administration of the bacterial
endotoxin/lipopolysaccharide (LPS). LPS was found to
stimulate formation of anandamide by macrophages
(Wagner et al. 1997). In addition, administration of
rimonabant was shown to increase mean arterial pressure,
pulse pressure, respiratory rate, and, most importantly,
survival in rat models of hemorrhagic shock (Cainazzo et
al. 2002; Varga et al. 1998; Wagner et al. 1997). Similarly,
rimonabant reversed the adverse effects of LPS on blood
pressure, cardiac contractility, and systemic vascular resis-
tance (Batkai et al. 2004a). Interestingly, the latter effect
was not mimicked by another CB1 inverse agonist, AM251,
indicating a possible specific benefit with rimonabant.
Rimonabant was also found to inhibit the LPS-induced
blood pressure lowering effect in pithed rats (Godlewski et
al. 2004). Finally, rimonabant was found to increase arterial
pressure and peripheral resistance in rats with liver cirrhosis
but not in control rats (Batkai et al. 2001; Ros et al. 2002).
Rimonabant also exhibited beneficial effects in a rat model
of doxorubicin-induced cardiomyopathy (Mukhopadhyay et
al. 2007). Taken together, these animal findings raise the
possibility that rimonabant may be beneficial for the
cardiovascular system of patients with liver cirrhosis or
septic shock (Mendizabal and Adler-Graschinsky 2007).
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On the other hand, myocardial infarction in patients
undergoing rimonabant treatment could be more damaging
than in those not receiving rimonabant, but no clinical data
are available in this regard.

Gastrointestinal effects

The expression of CB1 receptors in the gastrointestinal tract
has been demonstrated at the protein level by immunolog-
ical (Casu et al. 2003) as well as radioligand binding
techniques (Ross et al. 1998). Accordingly, cannabinoid
agonists can modulate various functional responses in the
gastrointestinal tract (Table 2). In general, cannabinoids
dampen secretion and motility. In detail, cannabinoids
reduce the electrically induced twitch response and secre-
tion in the ileum and electrically induced peristalsis in the

colon in vitro, The effect on the electrically induced ileal
contraction was also shown in human tissue. In vivo,
cannabinoids reduce esophageal sphincter relaxation, pen-
tagastrin- or vagally induced acid secretion in the stomach,
gastric emptying, intraluminal fluid accumulation in the
small intestine, gastrointestinal transit, and defecation
(Table 2). Interestingly, although cannabinoids inhibit the
intestinal motility evoked by nerve stimulation, they do not
affect that evoked by the muscarinic receptor agonist
carbachol (Croci et al. 1998). These data indicate that
cannabinoids act by inhibiting transmitter release rather
than by directly affecting intestinal smooth-muscle func-
tion. Accordingly, direct evidence for prejunctional inhibi-
tion of transmitter release has been obtained in release
(Pertwee et al. 1996b) and electrophysiological studies
(Storr et al. 2004). Rimonabant has consistently been found
to counteract the cannabinoid-induced effects, indicating

Table 2 Effects of rimonabant on functional parameters in the gastrointestinal tract

Functional parameter Species Effect of
cannabinoids

Antagonism
by
rimonabant

Effect of
rimonabant
by itself

References

Transient lower esophageal sphincter
relaxations

Dog – Yes + Lehmann et al. (2002)

Gastric contraction Mouse – Yes 0 Mule et al. (2007)
Pentagastrin- or vagally induced
acid secretion in the stomach

Rat – Yes 0 Coruzzi et al. (1999, 2006)

Ouabain-induced acid secretion
in the stomach

Rat ND ND + Borrelli (2007)

Gastric emptying Rat – Yes 0 Izzo et al. (1999b),
Landi et al. (2002)

Stress-induced gastric ulcer Rat – Yes 0 Germano et al. (2001)
Intraluminal fluid accumulation
in small intestine

Rat – Yes + Izzo et al. (1999a)

Electrically induced twitch
response and acetylcholine
release in ileum

Human – Yes 0 or + Croci et al. (1998), Guagnini
et al. (2006)

Guinea
pig

– Yes + Coutts and Pertwee (1997),
Guagnini et al. (2006),
Pertwee
et al. (1996b)

Electrically induced ileal secretion Rat – Yes 0 Tyler et al. (2000)
Electrically induced peristalsis
in distal colon

Mouse – Yes + Mancinelli et al. (2001)

Excitatory junction potential in colon Mouse – Yes + Storr et al. (2004)
Fast inhibitory junction potential
in colon

Mouse – Yes 0 Storr et al. (2004)

Gastrointestinal transit Rat – Yes 0 or + Izzo et al. (1999c), Landi
et al. (2002)

Mouse – Yes + Calignano et al. (1997b),
Carai et al. (2004, 2006),
Casu et al. (2003), Izzo et al.
(1999a, 2000, 2001a, b)

Defecation Mouse – Yes 0 Izzo et al. (1999a)

– Inhibition, + facilitation, 0 no effect, ND not determined
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that they occur via CB1 receptors. In some instances,
rimonabant alone elicited effects in the opposite direction to
those obtained with cannabinoids (Table 2), which may
reflect antagonism of the effects of tonically formed
endogenous cannabinoids and/or the inverse agonist prop-
erties of rimonabant. The rimonabant-induced enhancement
of intestinal motility develops tolerance within several days
of treatment (Carai et al. 2004), which is in line with the
observation that CB1-receptor knockout mice do not exhibit
major alterations of gastrointestinal transit time (Carai et al.
2006). Studies in dogs indicate that a cannabinoid agonist
can inhibit transient lower esophageal sphincter relaxations
and that such inhibition is antagonized by rimonabant but
not by a CB2 antagonist. Moreover, in the absence of
exogenous cannabinoids, rimonabant enhanced transient
lower esophageal sphincter relaxations (Lehmann et al.
2002). As the cannabinoid agonist did not affect responses
of gastric vagal mechanoreceptors to distension within the
same study, these responses may occur centrally rather than
locally in the esophagus. Rimonabant was also found to
inhibit the formation of indomethacin-induced intestinal
ulcers in rats. This beneficial effect may be related to an
influence on immune cells rather than neurones, as in the
same study, the production of tumor necrosis factor (TNF)
was inhibited as well (Croci et al. 2003). However, there
appear to be other pathogenetic factors, as ulcer formation
(but not production of TNF) was also antagonized by the
CB2-receptor inverse agonist SR 144528 (Croci et al.
2003). On the other hand, in a mouse model of colitis,
rimonabant aggravated symptoms, as did genetic ablation
of CB1 receptors, whereas a cannabinoid agonist as well as
the lack of the enzyme degrading the endocannabinoid
anandamide had a beneficial effect (Massa et al. 2004).
These findings raise the possibility that drugs such as
rimonabant may have potential in treating some disorders
of the gastrointestinal tract but may also adversely affect
others, such as esophageal reflux disease.

Urogenital effects

Cannabinoid receptors have been described in various
urogenital tissues, including the urinary bladder, vas
deferens, and uterus. CB1 receptors have been identified
by immunohistochemistry in the rat prostate where they
apparently exist on glandular rather than smooth-muscle
cells (Tokanovic et al. 2007). Nevertheless, rimonabant
reversed WIN 55,212–2 inhibition of field stimulation-
induced prostatic contraction, an effect mimicked by
cyclooxygenase inhibition (Tokanovic et al. 2007). The
authors interpreted these findings to suggest that epithelial
CB1 receptors in the prostate stimulate cyclooxygenase and
that the prostanoids formed (e.g., prostaglandin E2) in turn

inhibit smooth-muscle contraction. However, a prejunc-
tional CB1 receptor must also be considered under these
experimental conditions. Further studies related to canna-
binoid and rimonabant effects on the prostate are discussed
in the section on “Cancer”.

In the isolated mouse bladder cannabinoids cause a
rimonabant-sensitive inhibition of field-stimulation-induced
contraction without affecting the contraction elicited by
muscarinic or purinergic receptor agonists. In the absence of
exogenous cannabinoids, rimonabant slightly increased blad-
der contraction (Pertwee and Fernando 1996). These results
suggest that the cannabinoid and rimonabant effects on the
murine bladder occur prejunctionally and that an endogenous
tone is developing. Later studies confirmed a rimonabant-
sensitive inhibition of neuronally stimulated contractions of
isolated bladder in mouse and extended these findings to
rats. On the other hand, no such inhibition was seen in the
isolated bladder of dogs, pigs, cynomolgus monkeys, or
humans, indicating that the inhibitory effect of cannabinoids
on bladder contractility is species dependent (Martin et al.
2000). In line with the in vitro data from rodents, in vivo
studies in rats demonstrated a cannabinoid-induced reduction
of micturition thresholds, which became even more promi-
nent under conditions of bladder inflammation or after
sympathectomy. Rimonabant antagonized this effect and, in
the absence of exogenous cannabinoids, increased micturi-
tion threshold, at least after sympathectomy, again suggest-
ing an endogenous tone (Dmitrieva and Berkley 2002).

Cannabinoids inhibit cAMP accumulation (Pertwee et al.
1996c) and noradrenaline release (Schlicker et al. 2003) in
mouse vas deferens in a rimonabant-sensitive manner.
Accordingly, cannabinoids inhibit the field-stimulation-
induced contraction of the vas deferens of mice in a
rimonabant-sensitive manner (Lay et al. 2000; Pertwee et al.
1995; Rinaldi-Carmona et al. 1994). When given alone,
rimonabant increased both noradrenaline release (Schlicker et
al. 2003) and neurogenic contraction in this tissue (Pertwee et
al. 1996a). A similar cannabinoid effect was found in the rat
vas deferens, and there is an endogenous cannabinoid tone in
this tissue, as well (Christopoulous et al. 2001).

Other research has been dedicated to the effects of
cannabinoids and rimonabant on penile erection. In general,
an increase in penile erection was found after systemic
administration of rimonabant in an apomorphine-induced
erection model (da Silva et al. 2003) or its injection into the
paraventricular nucleus in male rats (Melis et al. 2006;
Succu et al. 2006a, b). In some cases, the rimonabant-
induced increase of penile erection was accompanied by an
increase in glutamic acid (Succu et al. 2006a, b) and NO
(Succu et al. 2006a) in the paraventricular dialysate, or the
activation of neuronal NO synthase (Melis et al. 2006). The
rimonabant-induced increase of penile erection was
inhibited by cannabinoids (Melis et al. 2004, 2006; Succu

356 Naunyn-Schmiedeberg’s Arch Pharmacol (2008) 378:345–369



et al. 2006b), an N-methyl-D-aspartate (NMDA) antagonist,
NO synthase inhibitors (Melis et al. 2004, 2006), and a
GABAB-receptor agonist (Melis et al. 2006). Thus, rimo-
nabant has the potential to affect penile erection, but until
now there has been no evidence that this involves a
peripherally mediated effect.

Cannabinoids can also affect the female genital tract and
embryonic development. Whereas cannabinoids can cause
relaxation of the human pregnant myometrium (Dennedy et
al. 2004) and contraction of the nonpregnant rat uterus
(Dmitrieva and Berkley 2002), both effects were rimona-
bant sensitive. Whereas low concentrations of cannabinoids
promote embryo attachment and outgrowth of blastocysts
in a rimonabant-sensitive manner (Liu et al. 2002), higher
cannabinoid concentrations can inhibit mouse embryonic
development in a rimonabant-sensitive manner by prevent-
ing blastocyst development (Liu et al. 2002; Paria et al.
1998; Yang et al. 1996). Whereas this apparently biphasic
cannabinoid dose-response curve makes it difficult to
predict what rimonabant may do with respect to embryonic
development, the use of rimonabant is not recommended in
pregnant women.

Immunological effects

Cannabinoids can affect the immune system in a complex
manner. They can reduce (1) expression of proinflamma-
tory cytokines (Carrier et al. 2006; Ihenetu et al. 2003a, b;
Klein et al. 1998; Ortega-Gutierrez et al. 2005; Sacerdote et
al. 2005; Smith et al. 2000, 2001), (2) lymphocyte
activation and proliferation (Carayon et al. 1998; Carrier
et al. 2006; Derocq et al. 1995; McKallip et al. 2002;
Patrini et al. 1997; Roa et al. 2004), (3) cytolytic activity
(Massi et al. 2000), and (4) macrophage activation
(Sacerdote et al. 2000). Moreover, cannabinoids can
increase endogenous anti-inflammatory pathways, e.g., by
increasing levels of corticosterone (Newton et al. 2004) or
the endogenous interleukin (IL)-1 receptor antagonist
(Molina-Holgado et al. 2003). Therefore, the net effect of
cannabinoids is considered to be anti-inflammatory and/or
immunosuppressive. Although CB2-receptor mRNA occurs
in much higher density in immune cells than does CB1-
receptor mRNA (Cabral and Staab 2005), rimonabant has
been reported to at least partly inhibit some cannabinoid
effects on the inflammatory and immune system. Thus, the
cannabinoid-induced downregulation of inflammatory cyto-
kines, including TNF-α, was reported to be rimonabant
sensitive in mice (Klein et al. 2004; Smith et al. 2000,
2001), rats (Cabral et al. 2001; Ortega-Gutierrez et al.
2005), and humans (Ihenetu et al. 2003b). Similarly,
rimonabant was beneficial in a rat model of adjuvant-
induced arthritis, although this may at least partly be due to

effects on sensorial hypersensitivity (Croci and Zarini
2007). Moreover, rimonabant may at least partially reverse
cannabinoid-induced reductions of natural killer cell cyto-
lytic activity (Massi et al. 2000), reductions of NO release
(Cabral et al. 2001; Molina-Holgado et al. 2002; Ponti et al.
2001; Sheng et al. 2005), and enhancements of release of
endogenous IL-1 receptor antagonist (Molina-Holgado et
al. 2003). Accordingly, rimonabant treatment caused greater
inflammatory responses in a mouse model of colitis,
thereby mimicking the phenotype of CB1-receptor knock-
out mice (Massa et al. 2004). Furthermore, rimonabant (as
with the CB2-receptor inverse agonist SR 144528) aggra-
vated the allergic responses in a mouse model of cutaneous
contact hypersensitivity (Karsak et al. 2007). On the other
hand, rimonabant may also exhibit antiproliferative and
immunomodulatory effects on human peripheral blood
mononuclear cells (Malfitano et al. 2008). Therefore,
the role of rimonabant for overall immune function remains
elusive.

Metabolic and endocrine effects

Whereas the beneficial clinical effects of rimonabant in
obesity were originally thought to be only mediated in the
central nervous system, a peripheral effect via CB1 receptors
expressed in adipocytes (Bensaid et al. 2003; Blüher et al.
2006; Engeli et al. 2005; Osei-Hyiaman et al. 2005; Yan et
al. 2007) may also contribute. The role of these receptors in
the regulation of adipocyte function may further increase in
obesity, as adipocyte expression of CB1 receptors is
upregulated in obese rats (Bensaid et al. 2003). Nevertheless,
it remains difficult to specifically assign rimonabant in vivo
effects on adipocyte function (Jbilo et al. 2005; Osei-
Hyiaman et al. 2005) to a central or peripheral site of action
in in vivo studies. However, studies in isolated adipocytes or
cell lines derived thereof have clearly demonstrated that at
least part of the effects of rimonabant on the function of
these cells is exerted locally. Thus, in cultured mouse
adipocytes, rimonabant was reported to increase the expres-
sion of mRNA and protein of Acrp30, an adipocyte-derived
plasma protein involved in the control of free-fatty-acid
oxidation, hyperglycemia, and hyperinsulinemia, an effect
that was absent in CB1-receptor knockout mice (Bensaid et
al. 2003). Moreover, rimonabant can inhibit the proliferation
of preadipocytes and induce their differentiation to mature
adipocytes, possibly by causing inhibition of extracellular
signal-regulated kinase (Gary-Bobo et al. 2006). According-
ly, the expression of CB1 receptors in human visceral
adipose tissue was inversely correlated with visceral fat
mass (Blüher et al. 2006). All of these effects may contribute
to the metabolic improvements reported upon rimonabant
treatment in obese and/or diabetic patients, but the specific
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relative roles of such peripheral compared with central
effects remain to be established (Brizzi et al. 2005; Jbilo et
al. 2005; Wierzbicki 2006).

Cannabinoids can affect secretion of several hormones,
including those released by the pituitary and several periph-
eral glands. Exogenously added cannabinoids can reduce
secretion of luteinizing hormone (LH) and testosterone in
mice without affecting their synthesis. Whereas rimonabant
alone did not affect serum LH, it blocked the cannabinoid
effect (Wenger et al. 2001). The same study also found that
CB1-receptor knockout mice have markedly lowered basal
serum concentrations of LH, an effect no longer susceptible
to either cannabinoids or rimonabant. Similar findings were
obtained for testosterone, which is released under the control
of LH. It remains to be determined why CB1-receptor
knockout has different effects on the LH/testosterone system
than does acute blockade of these receptors by rimonabant.
In rats, exogenous cannabinoids can reduce not only the
release of LH but also of other pituitary hormones such as
follicle-stimulating hormone and prolactin, with inhibition of
the latter being rimonabant sensitive (Fernandez-Ruiz et al.
1997). On the other hand, cannabinoids can increase the
release of adrenocorticotropin from the pituitary in a
rimonabant-sensitive manner, and this is reflected in
corresponding alterations of plasma corticosterone concen-
trations (Manzanares et al. 1999).

Despite the very limited expression of CB1 receptors in
many peripheral tissues (Engeli et al. 2005), it is found, e.g.,
in the thyroid gland (Porcella et al. 2002). Accordingly,
cannabinoids can lower serum concentrations of the thyroid
hormones tri-iodothyronine and thyroxine in a rimonabant-
sensitive manner (Porcella et al. 2002). CB1 receptors are
also expressed in the liver (Engeli et al. 2005), and CB1

antagonists not only have beneficial hemodynamic effects in
animal models of liver cirrhosis (Batkai et al. 2001, 2007)
but may also beneficially affect the fibrotic disease process
within the liver (Teixeira-Clerc et al. 2006). On the other
hand, adrenals apparently lack CB1-receptor expression, but
nevertheless, cannabinoids can reduce adrenaline release
in pithed rabbits or isolated rabbit adrenals upon electrical
stimulation in a rimonabant-sensitive manner, indicating that
this may reflect a prejunctional site of action (Niederhoffer et
al. 2001). Studies in CB1-receptor knockout mice suggest a
role in the regulation of bone mass and remodeling (Tam et
al. 2006), but possible effects of rimonabant or other CB1

antagonists have not been reported in this regard.

Other peripheral effects

Cannabinoid receptors have been described in various other
tissues such as the nonneuronal parts of the eye and the
airways. Based upon the clinical observation that smoking

marijuana can decrease the intraocular pressure (IOP),
several studies have been done on ocular function. In vivo
studies with topical cannabinoid administration in rabbits
have consistently demonstrated a lowering of IOP, an effect
that has been abolished by either systemic (Laine et al.
2002; Pate et al. 1998) or local administration of rimona-
bant (Song and Slowey 2000). The synthetic cannabinoid
WIN 55,212–2 administered as eye drops lowered intraoc-
ular pressure in humans suffering from glaucoma (Porcella
et al. 2001). CB1-receptor expression in the ciliary process
and trabecular meshwork tissues, as demonstrated in bovine
and human eyes (Stamer et al. 2001), may be the
mechanistic basis for these observations. Systemic admin-
istration of rimonabant alone increased IOP in rabbits (Pate
et al. 1998), a finding in line with the presence of
anandamide in the human eye (Stamer et al. 2001).
Moreover, rimonabant was also reported to inhibit prosta-
glandin-induced contraction of human ciliary muscle
(Romano and Lograno 2007). If rimonabant also increases
IOP in humans, this could be associated with an increased
risk for glaucoma.

Cannabinoids can affect airway function in rats
(Yousif and Oriowo 1999), guinea pigs (Calignano et al.
2000; Yoshihara et al. 2004, 2005), and humans (Patel et
al. 2003). Many of these effects are rimonabant insensitive
and rather involve vanilloid or CB2 receptors. Thus,
inhibition of the electrically induced contraction of the
guinea pig trachea is vanilloid-receptor mediated (Nieri et
al. 2003), whereas the sensory nerve-related activation of
the guinea pig and human vagus nerve (Patel et al. 2003)
or the inhibition of electrically stimulated rat (Yousif and
Oriowo 1999) and guinea pig airway contraction
(Yoshihara et al. 2004, 2005) is CB2-receptor mediated.
A CB2 receptor has also been implicated in the inhibition
of capsaicin-induced bronchoconstriction in some studies
(Patel et al. 2003; Yoshihara et al. 2004, 2005). By
contrast, other in vitro studies using electrically induced
noradrenaline release (Vizi et al. 2001) and in vivo studies
using capsaicin-induced bronchoconstriction (Calignano et
al. 2000) reported an inhibitory effect of cannabinoids in
the guinea pig in a rimonabant-sensitive and hence CB1-
mediated manner. The latter study also reported that
cannabinoids can cause bronchospasm when the constrict-
ing tone exerted by the vagus nerve was removed, and this
also was blocked by rimonabant. Finally, that study found
that rimonabant alone can enhance capsaicin-induced
bronchospasm. Thus, cannabinoids appear to be beneficial
with regard to bronchospasm in most settings, Whereas
most investigators propose that these effects are not
rimonabant sensitive, some controversy persists in this
regard. Therefore, watching for possible adverse effects of
rimonabant in subjects with obstructive airway disease
appears warranted.

358 Naunyn-Schmiedeberg’s Arch Pharmacol (2008) 378:345–369



Cancer

A possible relationship of cannabinoids to cancer has been
investigated, but a consistent pattern has not emerged. CB1

receptors are expressed to a greater extent in human
prostate cancer than in normal prostatic tissue (Sarfaraz et
al. 2005), and such expression has also been found in
prostate cancer cells lines such as PC-3 (Sanchez et al.
2003a), DU-145 (Melck et al. 2000), and LNCaP cells
(Sanchez et al. 2003b). In prostate cancer cells, cannabi-
noids can stimulate both growth-promoting pathways such
as protein kinase B, phosphatidylinositol-3-kinase pathway,
and Raf-1 stimulation (Sanchez et al. 2003b; Sarfaraz et al.
2005) or nerve-growth-factor production (Velasco et al.
2001). Whereas some studies have found growth-promoting
cannabinoid effects in prostate cancer (Sanchez et al.
2003b), others reported growth inhibiting and proapoptotic
responses (Melck et al. 2000; Sarfaraz et al. 2005).
Whereas these conflicting data do not allow definitive
conclusions regarding the role of cannabinoids in prostate
cancer, it is noteworthy that all of the above responses were
at least partially rimonabant sensitive.

Similarly, conflicting cannabinoid effects have been
reported with breast cancer. Some studies reported that
cannabinoids inhibit human breast cancer cell proliferation
induced by prolactin and nerve growth factor by decreasing
levels of prolactin receptors and nerve growth factor Trk
receptors in a rimonabant-sensitive manner (Melck et al.
1999, 2000). Moreover, rimonabant-sensitive inhibition of
breast cancer cell migration by cannabinoids has been
found (Grimaldi et al. 2006). In contrast, other studies
showed that not cannabinoids but rimonabant inhibits
breast cancer cell proliferation (Sarnataro et al. 2006). In
such studies, rimonabant inhibited cell proliferation by G1/
S cell-phase arrest, decreased expression of cyclin D and
cyclin E, and increased levels of cyclin-dependent kinase
inhibitors.

Whereas fewer studies have looked into cannabinoid and
rimonabant effects in other types of cancer, rimonabant-
sensitive inhibitory effects of cannabinoids on tumor cell
growth were reported for thyroid (Bifulco et al. 2001, 2004)
and liver cancer (Upham et al. 2003). On the other hand,
rimonabant was found to have additive inhibitory effects
with anandamide on mantle cell lymphoma (Flygare et al.
2005) and not to affect cannabinoid-induced growth
inhibition in C6 glioma cells (Jacobsson et al. 2001;
Sanchez et al. 1998, 2001). Moreover, lower levels of
CB1-receptor mRNA expression or immunoreactivity were
correlated with longer survival in pancreatic ductal adeno-
carcinoma patients (Michalski et al. 2008), raising the
possibility that inhibition of these receptors may be
beneficial in pancreatic cancer. In conclusion, controversial
data have been reported with regard to cannabinoid and

rimonabant effects on tumor cell growth. If rimonabant-
sensitive cannabinoid-induced inhibition of growth exists in
at least some tumors, the possibility arises that chronic use
of rimonabant might promote tumor growth. Whereas no
clinical data have been presented to support this hypothesis,
such potential adverse effects on long-term use of rimona-
bant should be monitored.

Conclusions

This review is dedicated to rimonabant, an inverse agonist
at cannabinoid receptors. This drug is specific, i.e., acts via
cannabinoid receptors (as opposed to noncannabinoid
receptors), and selective, i.e., has much more affinity for
CB1 than for CB2 receptors. Although CB1 receptors are
more abundant in the central nervous system, rimonabant
also has many effects in the periphery. Here we have
described the effects of rimonabant in the peripheral system
together with its prejunctional receptor-mediated effects in
the periphery and the central nervous system. With respect
to the periphery, its effects on the cardiovascular system,
urogenital system, airways, immune system, gastrointesti-
nal tract, eye, reproductive system, and cancer are covered.

In the cardiovascular system, cannabinoids decrease
blood pressure via a central site of action by activating
prejunctional receptors on the sympathetic nerve endings, a
decrease in peripheral resistance, and reduced cardiac
function in a rimonabant-sensitive manner. However,
cannabinoid-related and rimonabant-sensitive effects that
are expected to increase blood pressure have also been
reported, e.g., by administering cannabinoids to the brain,
sensory nerve endings, or vessels. Conflicting findings have
been reported about the effect of rimonabant on cannabi-
noid-induced endothelium-dependent and -independent
vasodilatation. Cannabinoids may play a role in myocardial
infarction and in hypotension affiliated with a series of
pathophysiological conditions, including several forms of
shock, as well as liver cirrhosis. Again these effects are
rimonabant sensitive.

In the gastrointestinal tract, cannabinoids inhibit intesti-
nal secretion, an effect counteracted by rimonabant. Most
studies focused on intestinal motility, which is inhibited by
cannabinoids in a rimonabant-sensitive manner. Another
site of action of cannabinoids is the urogenital system.
Cannabinoid receptors are present in the urinary bladder,
vas deferens, and uterus. Most studies reported cannabi-
noids to inhibit contraction in a rimonabant-sensitive
manner in both the bladder and vas deferens. Cannabi-
noid-induced contraction in the uterus is rimonabant
sensitive and dependent on pregnancy. Cannabinoids also
affect embryo attachment and outgrowth of blastocysts. The
effects of rimonabant on the immune system are not clear.
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As CB2 receptors are expressed in immune cells to a much
more marked extent than are CB1 receptors, one would
expect that rimonabant does not show a pronounced effect.
However, rimonabant has been reported to at least partly
inhibit some cannabinoid effects. In the endocrine system,
cannabinoids affect secretion of several hormones, includ-
ing LH, testosterone, follicle-stimulating hormone, prolac-
tin, corticosterone, and adrenocorticotropin. This secretion
takes place in several glands, including the pituitary,
thyroid, and adrenals. Cannabinoids inhibit secretion of
some, while stimulating secretion of other, hormones. Not
all effects of cannabinoids on hormone secretion are
rimonabant sensitive. Cannabinoid receptors have also been
described in the eye and airways. Cannabinoids decrease
IOP, which is counteracted by rimonabant. Cannabinoids
can also affect airway function; most of the effects of
cannabinoids in the airways are insensitive for rimonabant.
The last topic of this review is cancer. The effects of
cannabinoids have been described in various types of
cancer, including breast and prostate cancer. Conflicting
results have been reported about the effects on tumor
growth.

These data raise the possibility that rimonabant and
perhaps other CB1-receptor inverse agonists may not only
be effective in treating obesity and addictive disorders but
also have potential benefits in patients with metabolic
syndrome and some gastrointestinal disorders. On the other
hand, these data also raise the possibility that such drugs
may worsen myocardial infarction, glaucoma, asthma, and/
or cancer and may cause pregnancy to fail. All of these
additional potentially beneficial and harmful effects need to
be addressed in clinical studies.
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