17 research outputs found

    Kinetoplastid Phylogenomics Reveals the Evolutionary Innovations Associated with the Origins of Parasitism

    Get PDF
    The evolution of parasitism is a recurrent event in the history of life and a core problem in evolutionary biology. Trypanosomatids are important parasites and include the human pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., which in humans cause African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. Genome comparison between trypanosomatids reveals that these parasites have evolved specialized cell-surface protein families, overlaid on a well-conserved cell template. Understanding how these features evolved and which ones are specifically associated with parasitism requires comparison with related non-parasites. We have produced genome sequences for Bodo saltans, the closest known non-parasitic relative of trypanosomatids, and a second bodonid, Trypanoplasma borreli. Here we show how genomic reduction and innovation contributed to the character of trypanosomatid genomes. We show that gene loss has “streamlined” trypanosomatid genomes, particularly with respect to macromolecular degradation and ion transport, but consistent with a widespread loss of functional redundancy, while adaptive radiations of gene families involved in membrane function provide the principal innovations in trypanosomatid evolution. Gene gain and loss continued during trypanosomatid diversification, resulting in the asymmetric assortment of ancestral characters such as peptidases between Trypanosoma and Leishmania, genomic differences that were subsequently amplified by lineage-specific innovations after divergence. Finally, we show how species-specific, cell-surface gene families (DGF-1 and PSA) with no apparent structural similarity are independent derivations of a common ancestral form, which we call “bodonin.” This new evidence defines the parasitic innovations of trypanosomatid genomes, revealing how a free-living phagotroph became adapted to exploiting hostile host environments

    Extreme genome diversity in the hyper-prevalent parasitic eukaryote Blastocystis

    Get PDF
    Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%–61%median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize ?-glucans rather than ?-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease

    Missing pieces of an ancient puzzle:evolution of the Eukaryotic Membrane-Trafficking System

    No full text
    The membrane-trafficking system underpins cellular trafficking of material in eukaryotes and its evolution would have been a watershed in eukaryogenesis. Evolutionary cell biological studies have been unraveling the history of proteins responsible for vesicle transport and organelle identity revealing both highly conserved components and lineage-specific innovations. Recently, endomembrane components with a broad, but patchy, distribution have been observed as well, pieces that are missing from our cell biological and evolutionary models of membrane trafficking. These data together allow for new insights into the history and forces that shape the evolution of this critical cell biological system

    Spliceosomal introns in <i>Blastocystis</i>.

    No full text
    <p>(A) Sequences flanking the predicted exon–intron junctions in subtype (ST) 1 were aligned separately for each intron category and visualized with WebLogo3 (<a href="http://weblogo.threeplusone.com/" target="_blank">http://weblogo.threeplusone.com/</a>). The category and number (<i>N</i>) of each spliceosomal intron type are shown on the right. (B) Distribution of intron size in 3 sequenced <i>Blastocystis</i> ST genomes. Data for this figure can be found in <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.2003769#pbio.2003769.s032" target="_blank">S11 Data</a>.</p

    A comparison of unique genes between <i>Blastocystis</i> subtype (ST) pairs to pairs of protistan pathogens.

    No full text
    <p>The percentage of an organism’s protein-coding gene set, which is unique when compared to another organism’s protein-coding gene set and vice versa, is denoted by the width of the ribbon between the 2 as well as being indicated on the ribbon. For example, in a comparison between ST7 and ST1, 20% of the genes in ST7 are not represented in the ST1 set, while 10% of ST1's genes are not found in ST7. Comparisons are based on BLASTp results with an expect value (e-value) threshold of 1e-30 and >50% coverage of the query. <b>Abbreviations:</b> <i>C</i>., <i>Cryptosporidium</i>; <i>L</i>., <i>Leishmania</i>; <i>T</i>., <i>Theileria</i>. Plots were generated using Circos.</p
    corecore